Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Tools for Nanoscience

KIC Director Paul McEuen (left) and Co-Director David A. Muller. Credit: Cornell University
KIC Director Paul McEuen (left) and Co-Director David A. Muller. Credit: Cornell University

Abstract:
In nanoscience, researchersare truly limited by the technology of their field, needing increasingly more advanced tools for studying, analyzing and manipulating objects and systems at the scale of individual molecules and atoms.

Directors of the Kavli Institute at Cornell for Nanoscale Science, Paul McEuen and David A. Muller, talk about their mission to push the technology of observation, measurement and control to ever-smaller dimensions.

New Tools for Nanoscience

Oxnard, CA | Posted on April 1st, 2010

To expand the boundaries of nanoscience, the Kavli Institute at Cornell for Nanoscale Science is now devoted to the development and utilization of next-generation tools for exploring the nanoscale world. The new director of the institute is Cornell University Physics Professor Paul McEuen, widely known for his work with carbon-based systems such as graphene and nanotubes. Serving as co-director is Associate Professor of Applied and Engineering Physics David A. Muller, whose pioneering work includes developing electron energy loss spectroscopy as a tool for predicting materials properties.

Recently, McEuen and Muller discussed the institute's new mission and the need for advanced technology in nanoscience. In particularly, they described how they had come upon limits of observation and control in their own work, and how they plan to launch "high-risk, high-payoff" projects with the potential of changing the way scientists work worldwide. In McEuen's words, "we're looking for projects where you could say, ĎIf I succeed, suddenly everybody's going to want one of these.'"

As new co-directors of the Kavli Institute for Nanoscience, you're assuming leadership of an institute that is now six years old. How much are you changing its mission and structure, and how much of the new mission is a continuation of what KIC has been doing?

Paul McEuen (PM): In the first years of the Kavli Institute, the mission was to engage the nanoscale community, both at Cornell and outside, in a discussion about what were the most important issues facing nanoscale science. A series of conferences and workshops addressed this issue in a variety of contexts, all the way from the first Kavli Futures Symposium in Greenland to a series of conferences here on nanoscale imaging that David was very involved in. As a result of those conversations, one thing that emerged very clearly was that it's our tools that are still an enormous limiting factor in what we can do at the nanoscale world. We don't have eyes and hands at the nanoscale to see and control things the way we're used to at the milli-, micro- or macro-scale. As we thought about where we could have the most impact, we thought that trying to push the cutting edge in development of new sets of measurement approaches and tools would be a great way to go. If you make a new tool, you can have an enormous impact in a variety of different areas.

David A. Muller (DM): That about sums it up. I'd say that, in terms of what our strengths were, that this was the most high-impact, most efficient way we could think of going forward. So that's why we're re-focused.

Read the entire discussion here:

http://www.kavlifoundation.org/Cornell-mceuen-muller-interview

####

About Kavli Foundation
The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

The Foundation's mission is implemented through an international program of research institutes, professorships, and symposia in the fields of astrophysics, nanoscience, neuroscience, and theoretical physics as well as prizes in the fields of astrophysics, nanoscience, and neuroscience.

For more information, please click here

Copyright © Kavli Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Tools

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project