Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Asylum Research Offers New Solar Application Note by Ginger Group

Microscopic heterogeneity in (A) topography and (B) photocurrent on P3HT/PCBM blends. (C) Correlation between spatially-averaged photocurrent measured via photoconductive AFM (pcAFM) and EQE measurements for P3HT/PCBM blends annealed for different lengths of time indicate that pcAFM data are qualitatively consistent with expected device performance.
Microscopic heterogeneity in (A) topography and (B) photocurrent on P3HT/PCBM blends. (C) Correlation between spatially-averaged photocurrent measured via photoconductive AFM (pcAFM) and EQE measurements for P3HT/PCBM blends annealed for different lengths of time indicate that pcAFM data are qualitatively consistent with expected device performance.

Abstract:
Asylum Research, a technology leader in scanning probe/atomic force microscopy (AFM/SPM) announces a new application note by the Ginger group at the University of Washington, focusing on their work on Organic Photovoltaics (OPVs). The application note is entitled "New Scanning Probe Techniques for Analyzing Organic Photovoltaic Materials and Devices," by Rajiv Giridharagopal, Guozheng Shao, Chris Groves, and David S. Ginger, Department of Chemistry, University of Washington, Seattle. All work for the application note was performed using an MFP-3D-BIO™ Atomic Force Microscope from Asylum Research.

Asylum Research Offers New Solar Application Note by Ginger Group

Raleigh, NC | Posted on April 1st, 2010

The note reviews the instrumental issues associated with the application of scanning probe microscopy techniques, such as photoconductive atomic force microscopy and time-resolved electrostatic force microscopy, which have been shown to be useful in the study of nanostructured organic solar cells. These techniques offer unique insight into the underlying heterogeneity of OPV devices and provide a nanoscale basis for understanding how morphology directly affects OPV operation and efficiency. The note is available on request from Asylum Research and can also be downloaded at www.asylumresearch.com/Applications/Photovoltaics/Photovoltaics.shtml.

"The customizability of the MFP-3D and Asylum's support were critical to the success of the experiments that got me tenure," said co-author and Group Leader, David Ginger. "This note summarizes the instrumental side of our work to date and, in particular, describes some of the new SPM techniques that have been proven to be very useful in evaluating OPV materials."

####

About Asylum Research
Asylum Research is the technology leader in atomic force and scanning probe microscopy (AFM/SPM) for both materials and bioscience applications. Founded in 1999, we are an employee owned company dedicated to innovative instrumentation for nanoscience and nanotechnology, with over 250 years combined AFM/SPM experience among our staff. Our instruments are used for a variety of nanoscience applications in material science, physics, polymers, chemistry, biomaterials, and bioscience, including single molecule mechanical experiments on DNA, protein unfolding and polymer elasticity, as well as force measurements for biomaterials, chemical sensing, polymers, colloidal forces, adhesion, and more. Asylum’s product line offers imaging and measurement capabilities for a wide range of samples, including advanced techniques such as electrical characterization (CAFM, KFM, EFM), high voltage piezoresponse force microscopy (PFM), thermal analysis, quantitative nanoindenting, and a wide range of environmental accessories and application-ready modules.

Asylum’s MFP-3D set the standard for AFM technology, with unprecedented precision and flexibility. The MFP-3D is the first AFM with true independent piezo positioning in all three axes, combined with low noise closed-loop feedback sensor technology. The MFP-3D offers both top and bottom sample viewing and easy integration with most commercially-available inverted optical microscopes.

Asylum’s new Cypher AFM is the world’s first new small sample AFM/SPM in over a decade, and sets the new standard as the world’s highest resolution AFM. Cypher provides low-drift closed loop atomic resolution for the most accurate images and measurements possible today, rapid AC imaging with small cantilevers, Spot-On™ automated laser alignment for easy setup, integrated thermal, acoustic and vibration control, and broad support for all major AFM/SPM scanning modes and capabilities.

Asylum Research offers the lowest cost of ownership of any AFM company. Ask us about our industry-best 2-year warranty, our legendary product and applications support, and our exclusive 6-month money-back satisfaction guarantee. We are dedicated to providing the most technically advanced AFMs for researchers who want to take their experiments to the next level. Asylum Research also distributes third party cantilevers from Olympus, Nanoworld/Nanosensors, and our own MFM and iDrive™ tips.

For more information, please click here

Contacts:
Jennifer Jones


Asylum Research Corp.
940 Main Campus Drive, Suite 130
Raleigh, NC 27606
919-861-7420 office
919-861-7425 fax

Corporate Office:
6310 Hollister Ave
Santa Barbara, CA 93117
805-696-6466 office
888-472-2795 toll free

Copyright © Asylum Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

Relaunch of the Nanoscribe Website New design, optimized research, and impressive gallery of applications July 21st, 2014

Display technology/LEDs/SS Lighting/OLEDs

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Projecting a Three-Dimensional Future: TAU researchers develop holography technology that could change the way we view the world July 9th, 2014

Announcements

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014

Tools

Dongbu HiTek Unveils Low-Voltage BCDMOS Process for Efficient Power Management in Smart Phones and Tablet Computers July 21st, 2014

Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Solar/Photovoltaic

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

New Study Raises Possibility of Production of P-Type Solar Cells July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE