Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotechnology under the microscope

Christopher Bosso is the director and principal investigator for Northeastern's Nanotechnology and Society Research Group. Photo by Lauren McFalls.
Christopher Bosso is the director and principal investigator for Northeastern's Nanotechnology and Society Research Group. Photo by Lauren McFalls.

Abstract:
Nanotechnology is a continually developing branch of science, one with political, environmental and ethical implications that are not yet fully understood. Among those taking the lead to clarify those issues is Christopher J. Bosso, associate dean of Northeastern's School of Public Policy and Urban Affairs and director and principal investigator for the University's Nanotechnology and Society Research Group. Bosso is also author of a new book "Governing Uncertainty: Environmental Regulation in the Age of Nanotechnology." Here, he discusses public policy related to nanotechnology and the potential impact of the fast-growing science, for good and ill.

Nanotechnology under the microscope

Boston, MA | Posted on March 29th, 2010

Can you explain how you became involved in thinking about nanotechnology?

Every new technology has direct and indirect consequences for human health, the natural environment and the society at large. I have had a long interest in the public policy dimensions of such consequences going back to my doctoral work on chemical pesticides. So it did not take much convincing when faculty colleagues Jackie Isaacs (mechanical and industrial engineering), Ron Sandler (philosophy and religion) and Woody Kay (political science) asked me to join them in ongoing policy and ethics work connected to Northeastern's Center for High-rate Nanomanufacturing (CHN).

We quickly realized that we were confronting a set of issues beyond CHN's immediate domain, so with CHN director Ahmed Busnaina's help, we put together our own National Science Foundation proposal to look at the broader environmental and health challenges posed by nanomaterials. We had the right proposal at the right time, giving us a rare opportunity to do organized and sustained interdisciplinary thinking about policy and ethical issues related to nanotechnology and other emerging technologies.

Is it common for a university with so much science and engineering research in nanotechnology to also study its possible societal impacts? What are the benefits?

It is not uncommon. The difference lays in organization, breadth and sustained effort, and the degree to which such research is connected to and informed by basic and applied research and development.

The benefits are two-fold. First, having ready access to colleagues in science and engineering informs our thinking about policy and ethical issues, which in turn enables us to advise them on how policy and ethical concerns affect basic research, product development and technology adoption. All of this makes for a lively and truly interdisciplinary discourse. Equally important, these collaborations benefit students across the disciplines. They show our students that the greatest insights about any problem are derived from spanning disciplinary boundaries.

Nanotechnology is a vast area. From your perspective, what is the greatest potential for developments in the field?

It is hard to imagine any sector that won't be reshaped. Perhaps the most exciting breakthroughs are in areas like electronics and medicine.

The work at CHN and other research laboratories here and elsewhere point to revolutionary breakthroughs in the continued miniaturization and speed of computing in the near future, making your iPhone a clunky monster by comparison. It borders on the stuff of science fiction.

Breakthroughs in nanomedical applications — including a lot of work at Northeastern — portends fundamental shifts in how we detect and treat cancer, devise therapies for neurological diseases like Parkinson's or enhance the body's capacity to heal itself when damaged. The prospects for a future where we are able to effectively deal with cancer, Alzheimer's or diabetes is a startling one and merits our close attention along all kinds of policy and ethical dimensions.

What are the near- and long-term environmental and health concerns about nanotechnology, and how do we address them?

Short term concerns are rather prosaic and largely focused on ensuring that those working in laboratories and production facilities aren't exposed to potentially harmful engineered nanoparticles, and that they practice proper disposal procedures in dealing with nanomaterial waste.

Longer-term concerns include the extent to which nanoparticles are toxic to human and animal health — for example, whether cosmetics containing engineered nanoparticles have harmful long-term effects — and the possibly harmful side effects of nanomaterials introduced into the environment for otherwise beneficial reasons, such as injecting iron nanoparticles into the soil to remediate chemical-saturated "brownfields."

What is the appropriate role for government in all of this?

It is not always obvious. As citizens, regardless of overall ideology or partisan views, at minimum we expect government to address those risks that we as individuals can neither understand nor personally control. And we expect government to do so in some reasonably responsive and transparent way. And we also want government to promote economic growth, technological innovation and human health.

These are all balancing acts —and often, difficult ones — so the "appropriate" role for government will depend on our own priorities. And that requires citizens to be more aware of and critical about the benefits and possible costs of revolutionary technologies.

####

For more information, please click here

Contacts:
Samantha Fodrowski
617-373-5427

Copyright © Northeastern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Laboratories

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Scientists Set Record Resolution for Drawing at the One-Nanometer Length Scale: An electron microscope-based lithography system for patterning materials at sizes as small as a single nanometer could be used to create and study materials with new properties May 1st, 2017

Ethics

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Synthetic biology needs robust safety mechanisms before real world application: Ethics and technology hold the key to the success of synthetic biology September 17th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

PETA science consortium to present at Society for Risk Analysis meeting December 10th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Possible Futures

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Chip Technology

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Nanoelectronics

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Environment

Can crab shells provide a 'green' solution to malaria? Study shows how a mixture of chitin and silver nanoparticles inhibits growth of mosquito larvae May 12th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Safety-Nanoparticles/Risk management

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project