Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Synthetic biology needs robust safety mechanisms before real world application: Ethics and technology hold the key to the success of synthetic biology

Abstract:
Targeted cancer treatments, toxicity sensors and living factories: synthetic biology has the potential to revolutionize science and medicine. But before the technology is ready for real-world applications, more attention needs to be paid to its safety and stability, say experts in a review article published in Current Opinion in Chemical Biology.

Synthetic biology needs robust safety mechanisms before real world application: Ethics and technology hold the key to the success of synthetic biology

Amsterdam, Netherlands | Posted on September 17th, 2015

Synthetic biology involves engineering microbes like bacteria to program them to behave in certain ways. For example, bacteria can be engineered to glow when they detect certain molecules, and can be turned into tiny factories to produce chemicals.

Synthetic biology has now reached a stage where it's ready to move out of the lab and into the real world, to be used in patients and in the field. According to Professor Pamela Silver, one of the authors of the article from Harvard Medical School in the US, this move means researchers should increase focus on the safety of engineered microbes in biological systems like the human body.

"Historically, molecular biologists engineered microbes as industrial organisms to produce different molecules," said Professor Silver. "The more we discovered about microbes, the easier it was to program them. We've now reached a very exciting phase in synthetic biology where we're ready to apply what we've developed in the real world, and this is where safety is vital."

Microbes have an impact on health; the way they interact with animals is being ever more revealed by microbiome research - studies on all the microbes that live in the body - and this is making them easier and faster to engineer. Scientists are now able to synthesize whole genomes, making it technically possible to build a microbe from scratch.

"Ultimately, this is the future - this will be the way we program microbes and other cell types," said Dr. Silver. "Microbes have small genomes, so they're not too complex to build from scratch. That gives us huge opportunities to design them to do specific jobs, and we can also program in safety mechanisms."

One of the big safety issues associated with engineering microbial genomes is the transfer of their genes to wild microbes. Microbes are able to transfer segments of their DNA during reproduction, which leads to genetic evolution. One key challenge associated with synthetic biology is preventing this transfer between the engineered genome and wild microbial genomes.

There are already several levels of safety infrastructure in place to ensure no unethical research is done, and the kinds of organisms that are allowed in laboratories. The focus now, according to Dr. Silver, is on technology to ensure safety. When scientists build synthetic microbes, they can program in mechanisms called kill switches that cause the microbes to self-destruct if their environment changes in certain ways.

Microbial sensors and drug delivery systems can be shown to work in the lab, but researchers are not yet sure how they will function in a human body or a large-scale bioreactor. Engineered organisms have huge potential, but they will only be useful if proven to be reliable, predictable, and cost effective. Today, engineered bacteria are already in clinical trials for cancer, and this is just the beginning, says Dr. Silver.

"The rate at which this field is moving forward is incredible. I don't know what happened - maybe it's the media coverage, maybe the charisma - but we're on the verge of something very exciting. Once we've figured out how to make genomes more quickly and easily, synthetic biology will change the way we work as researchers, and even the way we treat diseases."

###

Read the story on Elsevier Connect

Article details

"Synthetic biology expands chemical control of microorganisms" by Tyler J Ford and Pamela A Silver (doi: 10.1016/j.cbpa.2015.05.012). The article appears in Current Opinion in Chemical Biology, Volume 28 (October 2015), published by Elsevier.

####

About Elsevier
Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions -- among them ScienceDirect, Scopus, Elsevier Research Intelligence and ClinicalKey -- and publishes over 2,500 journals, including The Lancet and Cell, and more than 33,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group plc, a world-leading provider of information solutions for professional customers across industries.

About Current Opinion in Chemical Biology

Current Opinion in Chemical Biology provides systematic information on the views of experts on current advances in chemical biology in a clear and readable form, and evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. The subject of chemical biology is divided into themed sections which are reviewed regularly to keep them relevant. For 2015 they include Next Generation Therapeutics, Synthetic Biology and Omics. www.journals.elsevier.com/current-opinion-in-chemical-biology

For more information, please click here

Contacts:
Aileen Christensen

31-204-852-053

Copyright © Elsevier

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Nanometrics Completes Acquisition of 4D Technology Corporation: The addition of Dynamic Interferometry® expands process control technology solutions November 16th, 2018

Synthetic Biology

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Cancer

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

New platform based on biology and nanotechnology carries mRNA directly to target cells: Combined platform provides safe, effective passage for therapies treating cancer and other diseases, Tel Aviv University researchers say October 29th, 2018

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Ethics

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

PETA science consortium to present at Society for Risk Analysis meeting December 10th, 2014

PETA science consortium experts to present at international nanotechology workshop: PETA International Science Consortium, Ltd., Is a Sponsor of Nano Risk Analysis II September 12th, 2014

Possible Futures

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Sensors

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

European Commission Project Creates Pilot Line for Companies to Develop Mid-Infrared Devices: Companies Can Submit Proposals for Possible Matching Funds To Help Develop Prototypes November 13th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Nanotech Artisans Sculpt with DNA November 5th, 2018

Announcements

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Nanometrics Completes Acquisition of 4D Technology Corporation: The addition of Dynamic Interferometry® expands process control technology solutions November 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project