Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The Truly Integrated Circuit is Printed and Flexible

Courtesy the Holst Centre
Courtesy the Holst Centre

Abstract:
For 40 years, so called integrated circuits have integrated little more than transistors, diodes and sensors onto one piece of material but now there are much more integrated circuits arriving where most electrical and electronic components are co-deposited on flexible substrates. Those flexible substrates are key, because this new electronics will be affordable and desirable on everything from apparel to human skin and electrical and consumer packaged goods, where surfaces are only rarely flat.

By Dr Peter Harrop, Chairman, IDTechEx

The Truly Integrated Circuit is Printed and Flexible

Cambridge, UK | Posted on March 24th, 2010

Savvy designers, seeking to use the new electronics to create "The iPod of labels", or some other blockbuster product, think of the flexible substrate as part of functioning of the product. For example, there as flexible films that emit and detect ultrasound, act as loudspeakers or change shape under an electrical field. The latter use electroactive polymer film and the recent purchase of Artificial Muscle Inc AMI by Bayer MaterialScience is a nice reminder that there are plenty of
exits for venture capitalists backing these new printed electronics companies.

Stretchable electronics

AMI polymer films, with printed stretchable electrodes, are used in the development, design and manufacture of actuators and sensing components. They offer significant advantages over traditional technologies used in this area. They provide touchscreen panels in consumer electronics with "awareness through touch" by creating authentic tactile feedback, just like a conventional keyboard. This innovative technology has significant application potential, particularly for electronic devices like smart phones, gaming controllers and touchpads. AMI initially targeted products for a range of applications including valves, pumps, positioners, power generation, snake-like, self-aiming camera lenses and sensors. With the emergent need for haptics in consumer electronics, particularly in touchscreens, AMI used EPAM™ to create the Reflex™ brand of haptic actuators. These products are targeted at a wide range of consumer electronics including smartphones and other portable electronics, computer peripherals, gaming controllers and touchpads.

Meanwhile, MC10 Inc, a company formed to commercialize stretchable electronics, has recently made a licensing agreement with the University of Illinois at Urbana-Champaign. According to the terms of the agreement, MC10 Inc. will gain access to technology contained in patents dealing with stretchable silicon technology from Professor John Rogers' laboratory. The venture-backed startup is currently developing processes and applications that enable high performance electronics to be placed in novel environments and form factors. MC10's approach transforms traditionally rigid, brittle semiconductors into flexible, stretchable electronics while retaining excellent electrical performance. Stretchable silicon allows for a degree of design freedom capable of expanding the functionality of existing products whilst providing a platform on which new microelectronic-enabled applications can be developed.

Surgery

In a completely different approach, the electroactive devices of Artificial Muscle AB in Sweden, with stretchable printed electrodes, make surgeons' tools snake through the human body. Researchers at Purdue University have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers. Control and monitoring electronics and electrics can be printed onto this new smart paper. The material is made by impregnating ordinary paper - even newsprint - with a mixture of mineral oil and "magnetic nanoparticles" of iron oxide. The nanoparticle-laden paper can then be moved using a magnetic field.

"Paper is a porous matrix, so you can load a lot of this material into it," said Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering.

The new technique represents a low-cost way to make small stereo speakers, miniature robots or motors for a variety of potential applications, including tweezers to manipulate cells and flexible fingers for minimally invasive surgery.

"Because paper is very soft it won't damage cells or tissue," Ziaie said. "It is very inexpensive to make. You put a droplet on a piece of paper, and that is your actuator, or motor."

cPaper

Kimberley Clark is one of the latest to announce a smart substrate suitable for printed electronics. Its cPaperTM is paper impregnated with carbon rather than the more expensive carbon nanotubes and it can be used as heating elements, electrodes in printed supercapacitors and supercabatteries and in many other applications.

Organic impregnated conductive paper

In a different approach, the University of Uppsala in Sweden may be on the way to improved printed batteries. It is developing a novel nanostructured high-surface area electrode material for energy storage applications composed of cellulose fibers of algal origin individually coated with a 50 nm thin layer of polypyrrole. Results show the hitherto highest reported charge capacities and charging rates for an all polymer paper-based battery. The composite conductive paper material is shown to have a specific surface area of 80 m2 g−1 and batteries based on this material can be charged with currents as high as 600 mA cm−2 with only 6% loss in capacity over 100 subsequent charge and discharge cycles. The aqueous-based batteries, which are entirely based on cellulose and polypyrrole and exhibit charge capacities between 25 and 33 mAh g−1 or 38−50 mAh g−1 per weight of the active material, open up new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems.

Paper-e

Also newly arrived is the Paper-e of the New University of Lisbon, which is an inspired way of printing transistor circuits by making the gate of the transistor the paper substrate itself. Interestingly, these transistors, made with the superior, new zinc oxide based printed semiconductors, have much better characteristics than one would expect at first sight and the physics of this is currently being clarified. Needless to say, all the above smart papers for printed electronics can be environmental and biodegradable.

Printed smart shelf

Plastic Electronic GmbH in Austria specialises in capacitive printed electronic structures. For example, its smart shelf consists of polymer film that deforms when things are placed on it and the crossbar conductive patterns on both sides monitor the change in capacitance and thus the position and relative weight of what is on the shelf. Now NTERA, Inc., a leader in all-printed, flexible, colour change display technologies, and plastic electronic GmbH, have entered into a license agreement to develop advanced printed electronics products using NTERA's flexible printed electrochromic displays.

Piezo flags and eels

Polyvinylidene difluoride PVDF and its derivatives are made into ferroelectric ink used to print non- volatile rewritable random access memory on flexible film. It can also form a film itself that forms a smart substrate for printed electronics, examples being electret microphones and energy harvesting "flags" and, under the water, "eels".

Smart barriers

Barrier layers to protect delicate printed organic photovoltaic and OLED displays are receiving close attention. Hugely improved barrier layer substrate film is announced by DNP & 3M Display & Graphics Business Lab and companies such as DELO are developing barrier adhesives and inks to go over the patterns printed on these barrier films and to seal encapsulation.

Edible and transparent electronics

Edible printed electronics from Eastman Kodak and Somark Innovations is initially intended to be applied directly to food, pharmaceutical tablets and meat but edible substrates will also be needed, preferably leveraging the electronic functions. Then there is the new discipline of transparent electronics being pursued by Hewlett Packard, Cambridge University in the UK and Fraunhofer ISC in Germany for example.

The largest event on the subject

The largest event on the subject is Printed Electronics Europe and many of the above organisations will be presenting as well as other leaders from across the world. The event will run 13-14 April in Dresden, Germany and includes two full days of conference and exhibition, Masterclasses, and Company Tours.

For full details and to register, visit www.IDTechEx.com/peEUROPE.

IDTechEx Dates:

Printed Electronics EUROPE 2010 | April 13-14 | Dresden, Germany www.IDTechEx.com/peEUROPE

Photovoltaics EUROPE 2010 | April 13-14 | Dresden, Germany www.IDTechEx.com/pvEUROPE

Energy Harvesting & Storage EUROPE 2010 | May 26-27 | Munich, Germany www.IDTechEx.com/Munich

Wireless Sensor Networks & RTLS Summit EUROPE 2010 | May 26-27 | Munich, Germany www.IDTechEx.com/Munich

RFID Europe | September 28-29 | Cambridge, UK www.IDTechEx.com/rfidEUROPE

Energy Harvesting & Storage USA 2010 | November | Boston

Wireless Sensor Networks & RTLS Summit USA 2010 | November | Boston

Printed Electronics USA 2010 | Dec 1-2 | Santa Clara, CA www.IDTechEx.com/peUSA

Photovoltaics USA 2010 | Dec 1-2 | Santa Clara, CA www.IDTechEx.com/peUSA

####

For more information, please click here

Contacts:
Media and Press
+ 44 (0) 1223 813703


Cara Van Heest
Marketing Manager
1 617 577 7890

Copyright © IDTechEx

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Production of Industrial Nano-Membrane for Water, Wastewater Purification Device in Iran May 2nd, 2015

Display technology/LEDs/SS Lighting/OLEDs

Desirable defects: A new meta-material based on colloids and liquid crystals April 30th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Nature: Low-reflection wings make butterflies nearly invisible: Irregular nanostructures on the transparent wing of the glasswing butterfly prevent the reflection of light -- publication in Nature Communications -- researchers plan applications April 23rd, 2015

Whiteboards of the future: New electronic paper could make inexpensive electronic displays: A simple structure of bi-colored balls made of tough, inexpensive materials is well suited for large handwriting-enabled e-paper displays April 21st, 2015

Products

Iran Unveils 6 Knowledge-Based Products April 11th, 2015

Toronto-based Environmental Technology Pioneer Green Earth Nano Science Expands in EU February 6th, 2015

DELSEY by Philippe Starck DELSEY Launches New Collection by Philippe Starck February 4th, 2015

NEI introduces NANOMYTE® SuperAi, a Durable Anti-ice Coating December 4th, 2014

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Chip Technology

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

SUNY Poly and Sematech Announce Air Products Joins Cutting-Edge CMP Center At Albany Nanotech Complex April 28th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Nanomedicine

Polymeric Nanocarriers Improve Performance of Anticancer Drugs April 30th, 2015

Making robots more human April 29th, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Food/Agriculture/Supplements

Research seeks alternatives for reducing bacteria in fresh produce using nanoengineering April 29th, 2015

Simultaneous Measurement of Drugs Made Possible by Nanosensors April 29th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Environment

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

Energy

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

ISDC To Showcase Northrop Grumman/Caltech Push Toward Space Solar Power April 28th, 2015

Textiles/Clothing

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Inkjet-printed liquid metal could bring wearable tech, soft robotics April 8th, 2015

FibeRio and VF Corporation Form Strategic Partnership to Lead the Apparel and Footwear Markets in Nanofiber Technology April 8th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Nanobiotechnology

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

An effective, biodegradable and broad-spectrum nanoparticles as potent antibacterial agents April 28th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project