Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Silicon Integrated Nanophotonics

Artist’ concept of 3D silicon processor chip with optical IO layer featuring on-chip nanophotonic network.  Courtesy IBM.
Artist’ concept of 3D silicon processor chip with optical IO layer featuring on-chip nanophotonic network. Courtesy IBM.

Abstract:
Development of on-chip optical interconnects for future multi-core processors

Silicon Integrated Nanophotonics

Yorktown Heights, NY | Posted on March 6th, 2010

The ultimate goal of this project is to develop a technology for on-chip integration of ultra-compact nanophotonic circuits for manipulating the light signals, similar to the way electrical signals are manipulated in computer chips. Nanoscale silicon photonics circuits are being developed to enable the integration of complete optical systems on a monolithic semiconductor chip that would eventually allow to overcome severe constraints of today's mostly copper I/O interconnects.

The current tendency in high performance computing systems is to increase the parallelism in processing at all levels utilizing multithreads, increasing the number of chips in racks and blades, as well as increasing the number of cores on a chip. The scaling of overall system performance that soon might approach Exaflop/s is, however, out of balance with respect to limited available bandwidth for shuttling ExaBytes of data across the system, between the racks, chips and cores.

Optics is destined to be utilized in data centers since optical communications can meet the large bandwidth demands of high-performance computing systems by bringing the immense advantages of high modulation rates and parallelism of wavelength division multiplexing. As it already happened in long-haul communications decades ago when optical fibers replaced copper cables, the copper cables that connect racks in the datacenters are started now to being replaced by optical fibers. Following the same trend optics can become competitive with copper at shorter and shorter distances eventually leading to optical on-board and may be even on-chip communications.

This future 3D-integated chip consists of several layers connected with each other with very dense and small pitch interlayer vias. The lower layer is a processor itself with many hundreds of individual cores. Memory layer (or layers) are bonded on top to provide fast access to local caches. On top of the stack is the Photonic layer with many thousands of individual optical devices (modulators, detectors, switches) as well as analogue electrical circuits (amplifiers, drivers, latches, etc.). The key role of a photonic layer is not only to provide point-to-point broad bandwidth optical link between different cores and/or the off-chip traffic, but also to route this traffic with an array of nanophotonic switches. Hence it is named Intra-chip optical network (ICON).

Silicon photonics offers high density integration of individual optical components on a single chip. Strong light confinement enables dramatic scaling of the device area and allows unprecedented control over optical signals. Silicon nanophotonic devices have immense capacity for low-loss, high-bandwidth data processing. Fabrication of silicon photonics system in the complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator platform also results in further integration of optical and electrical circuitry. Following the Moore's scaling laws in electronics, dense chip-scale integration of optical components can bring the price and power per a bit of transferred data low enough to enable optical communications in high performance computing systems.

To meet these stringent requirements and utilize fully all the benefits of optics an innovative engineering is necessary at all levels starting from the design of individual devices to the overall architecture of high-performance computing system. Nanoscale silicon photonics circuits that are being developed within this project are targeted to enable the monolithic integration of complete optical systems on a semiconductor chip.

More: www.research.ibm.com/photonics/publications/ecoc_tutorial_2008.pdf

####

For more information, please click here

Contacts:
Main operator
(914) 945-3000

Copyright © IBM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Chip Technology

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Photonics/Optics/Lasers

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project