Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Silicon Integrated Nanophotonics

Artist’ concept of 3D silicon processor chip with optical IO layer featuring on-chip nanophotonic network.  Courtesy IBM.
Artist’ concept of 3D silicon processor chip with optical IO layer featuring on-chip nanophotonic network. Courtesy IBM.

Abstract:
Development of on-chip optical interconnects for future multi-core processors

Silicon Integrated Nanophotonics

Yorktown Heights, NY | Posted on March 6th, 2010

The ultimate goal of this project is to develop a technology for on-chip integration of ultra-compact nanophotonic circuits for manipulating the light signals, similar to the way electrical signals are manipulated in computer chips. Nanoscale silicon photonics circuits are being developed to enable the integration of complete optical systems on a monolithic semiconductor chip that would eventually allow to overcome severe constraints of today's mostly copper I/O interconnects.

The current tendency in high performance computing systems is to increase the parallelism in processing at all levels utilizing multithreads, increasing the number of chips in racks and blades, as well as increasing the number of cores on a chip. The scaling of overall system performance that soon might approach Exaflop/s is, however, out of balance with respect to limited available bandwidth for shuttling ExaBytes of data across the system, between the racks, chips and cores.

Optics is destined to be utilized in data centers since optical communications can meet the large bandwidth demands of high-performance computing systems by bringing the immense advantages of high modulation rates and parallelism of wavelength division multiplexing. As it already happened in long-haul communications decades ago when optical fibers replaced copper cables, the copper cables that connect racks in the datacenters are started now to being replaced by optical fibers. Following the same trend optics can become competitive with copper at shorter and shorter distances eventually leading to optical on-board and may be even on-chip communications.

This future 3D-integated chip consists of several layers connected with each other with very dense and small pitch interlayer vias. The lower layer is a processor itself with many hundreds of individual cores. Memory layer (or layers) are bonded on top to provide fast access to local caches. On top of the stack is the Photonic layer with many thousands of individual optical devices (modulators, detectors, switches) as well as analogue electrical circuits (amplifiers, drivers, latches, etc.). The key role of a photonic layer is not only to provide point-to-point broad bandwidth optical link between different cores and/or the off-chip traffic, but also to route this traffic with an array of nanophotonic switches. Hence it is named Intra-chip optical network (ICON).

Silicon photonics offers high density integration of individual optical components on a single chip. Strong light confinement enables dramatic scaling of the device area and allows unprecedented control over optical signals. Silicon nanophotonic devices have immense capacity for low-loss, high-bandwidth data processing. Fabrication of silicon photonics system in the complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator platform also results in further integration of optical and electrical circuitry. Following the Moore's scaling laws in electronics, dense chip-scale integration of optical components can bring the price and power per a bit of transferred data low enough to enable optical communications in high performance computing systems.

To meet these stringent requirements and utilize fully all the benefits of optics an innovative engineering is necessary at all levels starting from the design of individual devices to the overall architecture of high-performance computing system. Nanoscale silicon photonics circuits that are being developed within this project are targeted to enable the monolithic integration of complete optical systems on a semiconductor chip.

More: www.research.ibm.com/photonics/publications/ecoc_tutorial_2008.pdf

####

For more information, please click here

Contacts:
Main operator
(914) 945-3000

Copyright © IBM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Chip Technology

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Nanoelectronics

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Announcements

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Photonics/Optics/Lasers

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE