Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Finding the right path: New approach could produce multi-function nanodevices

Chang-Beom Eom
Chang-Beom Eom

Abstract:
A team led by University of Wisconsin-Madison researchers has developed a new approach for creating powerful nanodevices, and their discoveries could pave the way for other researchers to begin more widespread development of these devices.

By Sandra Knisely

Finding the right path: New approach could produce multi-function nanodevices

Madison, WI | Posted on March 1st, 2010

The discoveries were published in the online edition of Nature Materials on February 28. Chang-Beom Eom, a professor of materials science and engineering, leads the team, which includes UW-Madison graduate students and research associates and collaborators from Penn State University, the University of Michigan and the University of California, Berkeley.

Particular metal-oxide materials (including some ferrites) have a unique magneto-electric property that allows the material to switch its magnetic field when its polarization is switched by an electric field and vice versa. This property means these materials can be used as bases for devices that act like signal translators capable of producing electrical, magnetic or even optical responses, and the devices can store information in any of these forms.

This could produce a variety of magnetoelelectric devices with a wide range of applications, such as new integrated circuits or tiny electronic devices with the information storage capacity of hard drives.

"We all have electric and magnetic devices that run independently, but sometimes we want these functions integrated into one device with one signal used for multiple responses," says Eom.

Essentially, Eom and his team have developed a roadmap to help researchers "couple" a material's electric and magnetic mechanisms. As researchers run a current through a magnetoelectric device, electric signals follow the electric field like a path. The signals' ultimate destination could be, as an example, a memory "bank" operated by a magnetic field. When the researchers switch the electric field, the signals encounter a fork in the path. Though both prongs of the fork head in a similar direction, one path is the correct one and will prompt the magnetic field to switch. This will allow the information carried by the signals to be stored in the bank. If the signals take the incorrect path, the magnetic state won't switch, the bank remains inaccessible, and the information is lost as soon as the electric field turns off.

In addition to determining the proper path for the electric signals, the team has developed a matrix that ensures the cross-coupling effect is stable, or non-volatile, which allows for long-term data storage. This matrix is then embedded in thin films.

These two discoveries — the correct path and the stabilizing matrix — will allow other researchers to study the fundamental physics of cross-coupling in materials and begin investigating how to turn the many possibilities of multifunctional devices into reality.

"People have been imagining multiple uses for cross-coupling," says Eom. "This work will allow us to make nonvolatile magnetoelectric devices at the nanoscale, meaning we can store the information even after the power is turned off."

####

For more information, please click here

Contacts:
Chang-Beom Eom

608-263-6305

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Possible Futures

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Memory Technology

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Bit data goes anti-skyrmions September 1st, 2017

Nanoelectronics

Bit data goes anti-skyrmions September 1st, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Discoveries

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Alliances/Trade associations/Partnerships/Distributorships

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project