Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Finding the right path: New approach could produce multi-function nanodevices

Chang-Beom Eom
Chang-Beom Eom

Abstract:
A team led by University of Wisconsin-Madison researchers has developed a new approach for creating powerful nanodevices, and their discoveries could pave the way for other researchers to begin more widespread development of these devices.

By Sandra Knisely

Finding the right path: New approach could produce multi-function nanodevices

Madison, WI | Posted on March 1st, 2010

The discoveries were published in the online edition of Nature Materials on February 28. Chang-Beom Eom, a professor of materials science and engineering, leads the team, which includes UW-Madison graduate students and research associates and collaborators from Penn State University, the University of Michigan and the University of California, Berkeley.

Particular metal-oxide materials (including some ferrites) have a unique magneto-electric property that allows the material to switch its magnetic field when its polarization is switched by an electric field and vice versa. This property means these materials can be used as bases for devices that act like signal translators capable of producing electrical, magnetic or even optical responses, and the devices can store information in any of these forms.

This could produce a variety of magnetoelelectric devices with a wide range of applications, such as new integrated circuits or tiny electronic devices with the information storage capacity of hard drives.

"We all have electric and magnetic devices that run independently, but sometimes we want these functions integrated into one device with one signal used for multiple responses," says Eom.

Essentially, Eom and his team have developed a roadmap to help researchers "couple" a material's electric and magnetic mechanisms. As researchers run a current through a magnetoelectric device, electric signals follow the electric field like a path. The signals' ultimate destination could be, as an example, a memory "bank" operated by a magnetic field. When the researchers switch the electric field, the signals encounter a fork in the path. Though both prongs of the fork head in a similar direction, one path is the correct one and will prompt the magnetic field to switch. This will allow the information carried by the signals to be stored in the bank. If the signals take the incorrect path, the magnetic state won't switch, the bank remains inaccessible, and the information is lost as soon as the electric field turns off.

In addition to determining the proper path for the electric signals, the team has developed a matrix that ensures the cross-coupling effect is stable, or non-volatile, which allows for long-term data storage. This matrix is then embedded in thin films.

These two discoveries — the correct path and the stabilizing matrix — will allow other researchers to study the fundamental physics of cross-coupling in materials and begin investigating how to turn the many possibilities of multifunctional devices into reality.

"People have been imagining multiple uses for cross-coupling," says Eom. "This work will allow us to make nonvolatile magnetoelectric devices at the nanoscale, meaning we can store the information even after the power is turned off."

####

For more information, please click here

Contacts:
Chang-Beom Eom

608-263-6305

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Possible Futures

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Memory Technology

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

A single-atom magnet breaks new ground for future data storage April 15th, 2016

Topology explains queer electrical current boost in non-magnetic metal: Scientists reduce resistance in PdCoO2 with magnetic fields April 12th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Discoveries

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Leti Extends Collaboration with Qualcomm on CoolCubeTM 3D Integration Technology for High-Density, High-Performance ICs: Collaboration Goals Include Building an Ecosystem To Take the Chip-stacking Technology from Design to Fabrication April 13th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Strem Chemicals and SONA Nanotech Sign Distribution Agreement for the World’s First Gold Nanorods Synthesized without CTAB February 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic