Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Finding the right path: New approach could produce multi-function nanodevices

Chang-Beom Eom
Chang-Beom Eom

Abstract:
A team led by University of Wisconsin-Madison researchers has developed a new approach for creating powerful nanodevices, and their discoveries could pave the way for other researchers to begin more widespread development of these devices.

By Sandra Knisely

Finding the right path: New approach could produce multi-function nanodevices

Madison, WI | Posted on March 1st, 2010

The discoveries were published in the online edition of Nature Materials on February 28. Chang-Beom Eom, a professor of materials science and engineering, leads the team, which includes UW-Madison graduate students and research associates and collaborators from Penn State University, the University of Michigan and the University of California, Berkeley.

Particular metal-oxide materials (including some ferrites) have a unique magneto-electric property that allows the material to switch its magnetic field when its polarization is switched by an electric field and vice versa. This property means these materials can be used as bases for devices that act like signal translators capable of producing electrical, magnetic or even optical responses, and the devices can store information in any of these forms.

This could produce a variety of magnetoelelectric devices with a wide range of applications, such as new integrated circuits or tiny electronic devices with the information storage capacity of hard drives.

"We all have electric and magnetic devices that run independently, but sometimes we want these functions integrated into one device with one signal used for multiple responses," says Eom.

Essentially, Eom and his team have developed a roadmap to help researchers "couple" a material's electric and magnetic mechanisms. As researchers run a current through a magnetoelectric device, electric signals follow the electric field like a path. The signals' ultimate destination could be, as an example, a memory "bank" operated by a magnetic field. When the researchers switch the electric field, the signals encounter a fork in the path. Though both prongs of the fork head in a similar direction, one path is the correct one and will prompt the magnetic field to switch. This will allow the information carried by the signals to be stored in the bank. If the signals take the incorrect path, the magnetic state won't switch, the bank remains inaccessible, and the information is lost as soon as the electric field turns off.

In addition to determining the proper path for the electric signals, the team has developed a matrix that ensures the cross-coupling effect is stable, or non-volatile, which allows for long-term data storage. This matrix is then embedded in thin films.

These two discoveries — the correct path and the stabilizing matrix — will allow other researchers to study the fundamental physics of cross-coupling in materials and begin investigating how to turn the many possibilities of multifunctional devices into reality.

"People have been imagining multiple uses for cross-coupling," says Eom. "This work will allow us to make nonvolatile magnetoelectric devices at the nanoscale, meaning we can store the information even after the power is turned off."

####

For more information, please click here

Contacts:
Chang-Beom Eom

608-263-6305

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Possible Futures

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Academic/Education

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Memory Technology

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Nanoelectronics

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Alliances/Trade associations/Partnerships/Distributorships

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project