Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New graphene 'nanomesh' could change the future of electronics

Abstract:
Graphene, a one-atom-thick layer of a carbon lattice with a honeycomb structure, has great potential for use in radios, computers, phones and other electronic devices. But applications have been stymied because the semi-metallic graphene, which has a zero band gap, does not function effectively as a semiconductor to amplify or switch electronic signals.

By Wileen Wong Kromhout

New graphene 'nanomesh' could change the future of electronics

Los Angeles, CA | Posted on February 27th, 2010

While cutting graphene sheets into nanoscale ribbons can open up a larger band gap and improve function, 'nanoribbon' devices often have limited driving currents, and practical devices would require the production of dense arrays of ordered nanoribbons — a process that so far has not been achieved or clearly conceptualized.

But Yu Huang, a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science, and her research team, in collaboration with UCLA chemistry professor Xiangfeng Duan, may have found a new solution to the challenges of graphene.

In research to be published in the March issue of Nature Nanotechnology (currently available online), Huang's team reveals the creation of a new graphene nanostructure called graphene nanomesh, or GNM. The new structure is able to open up a band gap in a large sheet of graphene to create a highly uniform, continuous semiconducting thin film that may be processed using standard planar semiconductor processing methods.

"The nanomeshes are prepared by punching a high-density array of nanoscale holes into a single or a few layers of graphene using a self-assembled block copolymer thin film as the mask template," said Huang.

The nanomesh can have variable periodicities, defined as the distance between the centers of two neighboring nanoholes. Neck widths, the shortest distance between the edges of two neighboring holes, can be as low as 5 nanometers.

This ability to control nanomesh periodicity and neck width is very important for controlling electronic properties because charge transport properties are highly dependent on the width and the number of critical current pathways.

Using such nanomesh as the semiconducting channel, Huang and her team have demonstrated room-temperature transistors that can support currents nearly 100 times greater than individual graphene nanoribbon devices, but with a comparable on-off ratio. The on-off ratio is the ratio between the currents when a device is switched on or switched off. This usually reveals how effectively a transistor can be switched off and on.

The researchers have also shown that the on-off ratio can be tuned by varying the neck width.

"GNMs can address many of the critical challenges facing graphene, as well as bypass the most challenging assembly problems," Huang said. "In conjunction with recent advances in the growth of graphene over a large-area substrate, this concept has the potential to enable a uniform, continuous semiconducting nanomesh thin film that can be used to fabricate integrated devices and circuits with desired device size and driving current.

"The concept of the GNM therefore points to a clear pathway towards practical application of graphene as a semiconductor material for future electronics. The unique structural and electronic characteristics of the GNMs may also open up exciting opportunities in highly sensitive biosensors and a new generation of spintronics, from magnetic sensing to storage," she said.

The study was funded in part by Huang's UCLA Henry Samueli School of Engineering and Applied Science Fellowship.

####

About UCLA Henry Samueli School of Engineering and Applied Science
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more information, please click here

Contacts:
Media Contacts
Wileen Wong Kromhout
(310) 206-0540

Copyright © UCLA Henry Samueli School of Engineering and Applied Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Thin films

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

New Material Allows for Ultra-Thin Solar Cells August 4th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Academic/Education

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

Spintronics

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Chip Technology

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Memory Technology

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Can our computers continue to get smaller and more powerful? University of Michigan computer scientist reviews frontier technologies to determine fundamental limits of computer scaling August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Sensors

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Nanoelectronics

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE