Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A heater made from woven fabrics

Thanks to the combination of two new dispersion technologies aqueous suspensions of Baytubes® carbon nanotubes (CNTs) can be produced which contain single tubes and thus show a high electrical and thermal conductivity. Multifilament yarns coated with such CNT dispersions can be woven to efficient fabric heaters. Such heaters already performed well in preventing the water in water storage tanks of JR Hokkaido’s “Ryuhyo-Norokko” train from freezing.
Thanks to the combination of two new dispersion technologies aqueous suspensions of Baytubes® carbon nanotubes (CNTs) can be produced which contain single tubes and thus show a high electrical and thermal conductivity. Multifilament yarns coated with such CNT dispersions can be woven to efficient fabric heaters. Such heaters already performed well in preventing the water in water storage tanks of JR Hokkaido’s “Ryuhyo-Norokko” train from freezing.

Abstract:
First commercial application of Baytubes® carbon nanotubes in Japan

New dispersion technology enables the full utilization of the electrical and thermal conductivity of carbon nanotubes

A heater made from woven fabrics

Leverkusen | Posted on February 23rd, 2010

Aqueous suspensions of carbon nanotubes (CNTs) containing individual tubes offer interesting perspectives for a number of new applications which depend on a high electrical or thermal conductivity, respectively. In particular, this applies to multifilament yarns coated with such CNT dispersions. An interesting development using multifilament yarns is a new fabric heater made by weaving CNTEC® conductive yarns from Kuraray Living Co., Ltd. This fabric generates heat homogeneously all over the surface because of its outstanding conductivity and is supposed to be the first commercial use of Baytubes® CNTs from Bayer MaterialScience in the Japanese market.

The fabric heater is lightweight and thin, compact and shows a long-lasting bending resistance. It can be used for instance for car seats, household electrical appliances, for heating of clothes and as an anti-freezing material. Tests revealed that it may for example be installed in the water storage tank of JR Hokkaido's "Ryuhyo-Norokko" train. Inside this train the temperature drops to around -20 °C in wintertime, because so far no heating devices other than potbelly stoves are available. According to JR Hokkaido railway company the fabric heater performed well in preventing the water from freezing. A seat heating application of the fabric heater is still on trial on another JR Hokkaido train line. It is anticipated that the aqueous dispersions might as well be suitable for the compounding of various kinds of materials.

In the course of their production CNTs usually form large and stable agglomerates where the tubes are tightly entangled to each other. Dispersing such agglomerates into individual tubes which show a maximum of electrical and thermal conductivity has so far been a challenge. Thanks to a new dispersion technology using a zwitterionic surfactant developed and patented by Prof. Dr. Bunshi Fugetsu from Hokkaido University it is now possible to produce stable aqueous suspensions containing CNTs at a mono-dispersed (tubular) level in industrial quantities. To achieve this, a unique method for non-destructive dispersion of CNT agglomerates into individual tubes developed by the Inoac Technical Center Co., Ltd. is applied as well. The products show a stable and homogeneous conductivity and a durability that easily covers the service life that is required for industrial products. Through a combination of both technologies it is possible to disentangle the agglomerates of Baytubes® in an efficient and stable way.

####

About Bayer MaterialScience
With 2008 sales of EUR 9.7 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and sports and leisure industries. Bayer MaterialScience has 30 production sites around the globe and employed approximately 15,100 people at the end of 2008. Bayer MaterialScience is a Bayer Group company.

For more information, please click here

Contacts:
Bayer MaterialScience AG
Dr. Frank Rothbarth
Tel.: + 49 214 30-25363
Fax: + 49 214 30-66426

Copyright © Bayer MaterialScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Products

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Nanotubes/Buckyballs/Fullerenes

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Automotive/Transportation

Nanoscale view of energy storage January 16th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

Going green with nanotechnology December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Home

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Lucintel identifies and prioritizes opportunities for alumina trihydrate (ATH) fillers in the global composites industry August 3rd, 2016

Textiles/Clothing

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project