Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > A heater made from woven fabrics

Thanks to the combination of two new dispersion technologies aqueous suspensions of Baytubes® carbon nanotubes (CNTs) can be produced which contain single tubes and thus show a high electrical and thermal conductivity. Multifilament yarns coated with such CNT dispersions can be woven to efficient fabric heaters. Such heaters already performed well in preventing the water in water storage tanks of JR Hokkaido’s “Ryuhyo-Norokko” train from freezing.
Thanks to the combination of two new dispersion technologies aqueous suspensions of Baytubes® carbon nanotubes (CNTs) can be produced which contain single tubes and thus show a high electrical and thermal conductivity. Multifilament yarns coated with such CNT dispersions can be woven to efficient fabric heaters. Such heaters already performed well in preventing the water in water storage tanks of JR Hokkaido’s “Ryuhyo-Norokko” train from freezing.

Abstract:
First commercial application of Baytubes® carbon nanotubes in Japan

New dispersion technology enables the full utilization of the electrical and thermal conductivity of carbon nanotubes

A heater made from woven fabrics

Leverkusen | Posted on February 23rd, 2010

Aqueous suspensions of carbon nanotubes (CNTs) containing individual tubes offer interesting perspectives for a number of new applications which depend on a high electrical or thermal conductivity, respectively. In particular, this applies to multifilament yarns coated with such CNT dispersions. An interesting development using multifilament yarns is a new fabric heater made by weaving CNTEC® conductive yarns from Kuraray Living Co., Ltd. This fabric generates heat homogeneously all over the surface because of its outstanding conductivity and is supposed to be the first commercial use of Baytubes® CNTs from Bayer MaterialScience in the Japanese market.

The fabric heater is lightweight and thin, compact and shows a long-lasting bending resistance. It can be used for instance for car seats, household electrical appliances, for heating of clothes and as an anti-freezing material. Tests revealed that it may for example be installed in the water storage tank of JR Hokkaido's "Ryuhyo-Norokko" train. Inside this train the temperature drops to around -20 °C in wintertime, because so far no heating devices other than potbelly stoves are available. According to JR Hokkaido railway company the fabric heater performed well in preventing the water from freezing. A seat heating application of the fabric heater is still on trial on another JR Hokkaido train line. It is anticipated that the aqueous dispersions might as well be suitable for the compounding of various kinds of materials.

In the course of their production CNTs usually form large and stable agglomerates where the tubes are tightly entangled to each other. Dispersing such agglomerates into individual tubes which show a maximum of electrical and thermal conductivity has so far been a challenge. Thanks to a new dispersion technology using a zwitterionic surfactant developed and patented by Prof. Dr. Bunshi Fugetsu from Hokkaido University it is now possible to produce stable aqueous suspensions containing CNTs at a mono-dispersed (tubular) level in industrial quantities. To achieve this, a unique method for non-destructive dispersion of CNT agglomerates into individual tubes developed by the Inoac Technical Center Co., Ltd. is applied as well. The products show a stable and homogeneous conductivity and a durability that easily covers the service life that is required for industrial products. Through a combination of both technologies it is possible to disentangle the agglomerates of Baytubes® in an efficient and stable way.

####

About Bayer MaterialScience
With 2008 sales of EUR 9.7 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and sports and leisure industries. Bayer MaterialScience has 30 production sites around the globe and employed approximately 15,100 people at the end of 2008. Bayer MaterialScience is a Bayer Group company.

For more information, please click here

Contacts:
Bayer MaterialScience AG
Dr. Frank Rothbarth
Tel.: + 49 214 30-25363
Fax: + 49 214 30-66426

Copyright © Bayer MaterialScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Products

Oxford Nanoimaging to provide desktop super-resolution microscopes May 10th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 10th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Automotive/Transportation

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Home

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Transparent wood could one day help brighten homes and buildings March 31st, 2016

Textiles/Clothing

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

No more washing: Nano-enhanced textiles clean themselves with light: New technique to grow nanostructures that degrade organic matter when exposed to light March 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic