Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > MSU team developing new way to fight influenza

Abby Leary and Jim Wiley work with an aerosolization chamber used to innoculate the lung. (MSU photo by Kelly Gorham).
Abby Leary and Jim Wiley work with an aerosolization chamber used to innoculate the lung. (MSU photo by Kelly Gorham).

Montana State University scientists are researching the use of nanomaterials to develop a new way of fighting influenza and other respiratory infections caused by viruses.

MSU team developing new way to fight influenza

Bozeman, MT | Posted on February 22nd, 2010

If it works in humans the way it does in mice, people will prepare for a respiratory viral assault by inhaling an aerosol spray containing tiny protein cages that will activate an immune response in their lungs. This activated immune state will be good against any respiratory virus and last more than a month. People won't have to wait for scientists to analyze new viruses, develop vaccines against them, then distribute and administer the vaccine.

"It's like having a fire department at your house before the fire. If a fire starts, you don't have to call them and wait for them to arrive. They are already there," said Jim Wiley, assistant research professor in the Department of Veterinary Molecular Biology in MSU's College of Agriculture.

Wiley has been working on the protein cage nanomaterial approach for more than 2 1/2 years. A recent $275,000 grant from the National Institutes of Allergy and Infectious Diseases will allow his research team to continue another two years. The grant was made possible through the American Recovery and Reinvestment Act of 2009.

The hollow protein cages he uses in his research are prepared in MSU's Center for Bio-Inspired Nanomaterials, Wiley said. These protein cages are made by a heat-loving bacterium, and they are similar to one which the Center for Bio-Inspired Nanomaterials recently isolated from a bacterium that thrives in the thermal features of Yellowstone National Park. The cages are hollow spheres that carry nothing on the outside. They are so small that they have to be magnified 50,000 times to be seen under an electron microscope. A human hair is 7,000 to 10,000 times wider than these cages.

The cages alone are enough to set off an immune response in the lungs, Wiley said. If the approach works in humans, people who have prepared their lungs with nanomaterials might sniffle for a couple of days instead of being hospitalized. Rather than missing work for a few days with an influenza infection, they may only need to sleep a few extra hours at night.

"You would be able to prepare an entire population for an imminent respiratory viral infection, like the swine influenza infections that we just experienced," Wiley said.

Wiley and 10 co-authors from MSU, Utah State University and the University of Rochester Medical Center have already published a scientific paper on the nanomaterial approach, which is based upon activating "inducible Bronchus-Associated Lymphoid Tissue," or iBALT, in the lung. This iBALT is a naturally occurring tissue that is made in the lung as part of the normal immune response to an infection. The paper showed that the presence of iBALT accelerated the recovery of infected mice without causing lung damage or other harmful side effects. The acceleration effect of the treatment disappeared gradually after one month. The paper about it ran in the September 2009 edition of PLoS One, an online scientific journal from the Public Library of Science.

MSU co-authors of the paper were Laura Richert, Steve Swain, Ann Harmsen, Mark Jutila and Allen Harmsen in the Department of Veterinary Molecular Biology; Trevor Douglas, Chris Broomell and Mark Young in the Center for Bio-Inspired Nanomaterials. Douglas and Broomell are also in the Department of Chemistry and Biochemistry. Young is also in the Department of Plant Sciences and Plant Pathology.

In the current project, Wiley said he and his team are testing this iBALT-based therapy in animal models, whose response to influenza infection is close to that seen in humans. He doesn't know when this iBALT-based approach will be tested in humans, but said, "It certainly is promising as a treatment right at the moment."

He added that nanomaterials could be generated much faster than vaccines.

Wiley's current research team consists of Richert and four lab technicians: Abby Leary, Rebecca Pulman, Soo Han and Mark McAlpine. Richert is a doctoral student from Idaho.

"I have been excited to work on it," Richert said about the project. "It has been interesting from a non-traditional immunological standpoint."

Wiley said if iBALT-based therapies had been in place last year, people would have been better prepared for H1N1.

"If we had been able to develop a state of immune preparedness in the lungs or a partial activation state in the lungs, we could have at least given people some degree of protection," Wiley said.

MSU Technology Transfer Officer Nick Zelver said MSU has a patent on using protein cages to trigger the rapid production of lymphoid tissue in the lung. The technology could be used to prevent or treat a range of pulmonary diseases including influenza. It might counter bioterrorism threats, such as airborne microbes. The protein cage technology is available for licensing from MSU.

To see all MSU technologies available for licensing, go to


About Montana State University
Designated as one of 96 research universities with "very high research activity" by the Carnegie Foundation for the Advancement of Teaching, MSU offers significant opportunities for research, scholarship and creative work. This highest tier classification-out of 4,400 institutions-distinguishes MSU as the only institution in the five-state region of Montana, Wyoming, Idaho and North and South Dakota to achieve this level of research prominence.

For more information, please click here

Evelyn Boswell
(406) 994-5135

Copyright © Montana State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014


Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Global 450 consortium announces new general manager of internal operations: TSMC’s Cheng-Chung Chien Receives Unanimous Support, Brings History of Innovation and Efficiency to Global Consortium of Companies Driving Industry Transition to 450mm Wafer Technology March 26th, 2014

NanoTecNexus to Host "Chemistry of Wine" Fundraiser in Support of STEM Education - Collaborations Key to Success - March 20th, 2014


Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014


'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Patents/IP/Tech Transfer/Licensing

Harris & Harris Group Notes Mersana's Collaboration Agreement With Subsidiary of Takeda Pharmaceutical Co. April 8th, 2014

Nanoparticles cause cancer cells to self-destruct April 3rd, 2014

A*STAR's Simtech collaboration agreements to accelerate the growth and development of the microfluidics industry April 1st, 2014

Dolomite releases novel droplet-on-demand sequencing and droplet generation microfluidic system April 1st, 2014

Homeland Security

Nanotube coating helps shrink mass spectrometers March 25th, 2014

Bionic plants: Nanotechnology could turn shrubbery into supercharged energy March 16th, 2014

Detecting Bioterrorism: Is Chemistry Enough? Los Alamos scientist addresses bioaerosol risks and detection March 12th, 2014

Colored diamonds are a superconductor’s best friend March 6th, 2014


Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

IDTechEx Printed Electronics Europe 2014 Award Winners April 1st, 2014

Dais Analytic Wins SBIR Grant: Dais Analytic Receives US Army Small Business Innovation Research Grant to Further Its Demonstrated Successes in Cleaning Most Forms of Wastewater March 28th, 2014

Scientists develop world’s first light-activated antimicrobial surface that also works in the dark March 24th, 2014


Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE