Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotechnology sparks energy storage on paper and cloth

Bing Hu, a post-doctoral fellow, prepares a small square of ordinary paper with an ink that will deposit nanotubes on the surface that can then be charged with energy to create a battery. Credit: L.A. Cicero
Bing Hu, a post-doctoral fellow, prepares a small square of ordinary paper with an ink that will deposit nanotubes on the surface that can then be charged with energy to create a battery. Credit: L.A. Cicero

Abstract:
The frontiers of energy storage research are expanding, thanks to the burgeoning science of nanotechnology. Stanford engineer Yi Cui and his team have manufactured new energy storage devices out of paper and cloth, with a range of potential applications. Their research also has shown that using silicon nanowires to replace carbon anodes in lithium ion batteries can significantly improve their performance.

Nanotechnology sparks energy storage on paper and cloth

Stanford, CA | Posted on February 21st, 2010

By dipping ordinary paper or fabric in a special ink infused with nanoparticles, Stanford engineer Yi Cui has found a way to cheaply and efficiently manufacture lightweight paper batteries and supercapacitors (which, like batteries, store energy, but by electrostatic rather than chemical means), as well as stretchable, conductive textiles known as "eTextiles" - capable of storing energy while retaining the mechanical properties of ordinary paper or fabric.

While the technology is still new, Cui's team has envisioned numerous functional uses for their inventions. Homes of the future could one day be lined with energy-storing wallpaper. Gadget lovers would be able to charge their portable appliances on the go, simply plugging them into an outlet woven into their T-shirts. Energy textiles might also be used to create moving-display apparel, reactive high-performance sportswear and wearable power for a soldier's battle gear.

The key ingredients in developing these high-tech products are not visible to the human eye. Nanostructures, which can be assembled in patterns that allow them to transport electricity, may provide the solutions to a number of problems encountered with electrical storage devices currently available on the market.

The type of nanoparticle used in the Cui group's experimental devices varies according to the intended function of the product - lithium cobalt oxide is a common compound used for batteries, while single-walled carbon nanotubes, or SWNTs, are used for supercapacitors.

Theoretical plus practical

Cui, an assistant professor of materials science and engineering at Stanford, leads a research group that investigates new applications of nanoscale materials. The objective, said Cui, is not only to supply answers to theoretical inquiries but also to pursue projects with practical value. Recently, his team has focused on ways to integrate nanotechnology into the realm of energy development.

"Energy storage is a pretty old research field," said Cui. "Supercapacitors, batteries - those things are old. How do you really make a revolutionary impact in this field? It requires quite a dramatic difference of thinking."

While electrical energy storage devices have come a long way since Alessandro Volta debuted the world's first electrical cell in 1800, the technology is facing yet another revolution. Current methods of manufacturing energy storage devices can be capital intensive and environmentally hazardous, and the end products have noticeable performance constraints - conventional lithium ion batteries have a limited storage capacity and are costly to manufacture, while traditional capacitors provide high power but at the expense of energy storage capacity.

With a little help from new science, the batteries of the future may not look anything like the bulky metal units we've grown accustomed to. Nanotechnology is favored as a remedy both for its economic appeal and its capability to improve energy performance in devices that integrate it. Replacing the carbon (graphite) anodes found in lithium ion batteries with anodes of silicon nanowires, for example, has the potential to increase their storage capacity by 10 times, according to experiments conducted by Cui's team.

Limitations of silicon

Silicon had previously been recognized as a favorable anode material because it can hold a larger amount of lithium than carbon. But applications of silicon were limited by its inability to sustain physical stress - namely, the fourfold volume increase that silicon undergoes when lithium ions attach themselves to a silicon anode in the process of charging a battery, as well as the shrinkage that occurs when lithium ions are drawn out as it discharges. The result was that silicon structures would disintegrate, causing anodes of this material to lose much if not all of their storage capacity.

Cui and collaborators demonstrated in previous publications in Nature, Nanotechnology and Nano Letters that the use of silicon nanowire battery electrodes, mechanically capable of withstanding the absorption and discharge of lithium ions, was one way to sidestep the problem.

The findings hold promise for the development of rechargeable lithium batteries offering a longer life cycle and higher energy capacity than their contemporaries. Silicon nanowire technology may one day find a home in electric cars, portable electronic devices and implantable medical appliances.

Cui now hopes to direct his research toward studying both the "hard science" behind the electrical properties of nanomaterials and designing real-world applications.

"This is the right time to really see what we learn from nanoscience and do practical applications that are extremely promising," said Cui. "The beauty of this is, it combines the lowest cost technology that you can find to the highest tech nanotechnology to produce something great. I think this is a very exciting idea … a huge impact for society."

The Cui group's latest research on energy storage devices was detailed in papers published in the online editions of the Proceedings of the National Academy of Sciences in December 2009 ("Highly Conductive Paper for Energy-Storage Devices") and Nano Letters in January 2010 ("Stretchable, Porous and Conductive Energy Textiles").

Cui's talk at the symposium "Nanotechnology: Will Nanomaterials Revolutionize Energy Applications?" is scheduled for 9:50 a.m. Feb. 20 in Room 1B of the San Diego Convention Center.

Aimee Miles is a science-writing intern at the Stanford News Service.

####

About Stanford University
Located between San Francisco and San Jose in the heart of Silicon Valley, Stanford University is recognized as one of the world's leading research and teaching institutions.

For more information, please click here

Contacts:
Dan Stober
Stanford News Service
(650) 721-6965

Mobile (650) 224-7601

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

Videos/Movies

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

ASIC Development for MEMS Applications: A Platform Approach March 25th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Nanotubes/Buckyballs

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Effect of Carbon Nanotubes on Properties of Cement Composites Studied in Iran March 23rd, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Energy

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Automotive/Transportation

Clean energy future: New cheap and efficient electrode for splitting water March 18th, 2015

Imperfect graphene opens door to better fuel cells: Membrane could lead to fast-charging batteries for transportation March 18th, 2015

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells March 10th, 2015

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Chemists make new silicon-based nanomaterials March 27th, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

NC State researchers create 'nanofiber gusher': Report method of fabricating larger amounts of nanofibers in liquid March 19th, 2015

Drexel Univ. materials research could unlock potential of lithium-sulfur batteries March 17th, 2015

Nanobiotechnology

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

TGAC's take on the first portable DNA sequencing 'laboratory': First remote laboratory allows researchers to conduct real-time anaylsis March 19th, 2015

Alliances/Partnerships/Distributorships

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

Halas, Nordlander awarded Optical Society's R.W. Wood Prize: Rice University researchers recognized for pioneering nanophotonics March 21st, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE