Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Meigan Aronson Named Department of Defense Security Fellow

Meigan Aronson
Meigan Aronson

Abstract:
Will Receive $4.25 Million to Advance High-Temperature Superconductor Research

Meigan Aronson Named Department of Defense Security Fellow

Upton & Stony Brook, NY | Posted on February 18th, 2010

Meigan Aronson, a physicist at the U.S. Department of Energy's Brookhaven National Laboratory and a professor in the Department of Physics and Astronomy at Stony Brook University, has been selected by the U.S. Department of Defense (DOD) to be one of 11 distinguished scientists and engineers forming the 2010 class of its National Security Science and Engineering Faculty Fellowship program. The fellows were chosen from an initial pool of 800 nominees.

The fellows conduct basic research in core science and engineering disciplines that are expected to underpin future DOD technology development. Aronson's sponsoring institution, Stony Brook University, will receive $850,000 per year over a five-year period from DOD to fund her research on high-temperature superconductors, materials that conduct electricity without resistance.

"I am pleased that this funding will allow me to work over an extended time on my project to design new superconductors," Aronson said. "I'm also gratified that I have top-notch scientific resources available at both Brookhaven Lab and Stony Brook University to pursue this research."

Superconductors are currently used in a range of electronic applications, notably in wireless communications. Replacing existing conventional electrical conductors with superconducting cables would lead to more efficient transmission of electrical power and to lighter weight electrical motors that would operate with practically no loss in power. Superconductors provide unsurpassed sensitivity as detectors in applications such as medical imaging and homeland security. One of the most important steps toward wide-scale adoption of superconducting technologies would be the discovery of new families of materials that are superconducting at room temperature. Then the bulky and energy-intensive cryogenic environments necessary for the current generation of superconductors would no longer be required.

Aronson will use a new method to design high-temperature superconductors, called theory-assisted synthesis. She will work with theoretical and experimental collaborators from Rutgers University and the University of Michigan to determine the electronic behaviors of selected superconducting materials and will use this information to decide which ones might have the most potentially useful properties, and therefore, would be the best to fabricate. By modifying the combination of
elements in the superconducting material, it will be possible to predict the compositions of new materials that can be expected to have improved superconducting properties.

Meigan Aronson earned an A.B. in physics from Bryn Mawr College in 1980 and an M.S. and Ph.D., in 1982 and 1988, respectively, from the University of Illinois, Urbana-Champaign. She was a postdoctoral assistant at Los Alamos National Laboratory from 1987 to 1989. In 1990, she became an assistant professor of physics at the University of Michigan, and worked her way through the ranks to become a full professor in 2002. In 2004 she became the associate dean for natural sciences in
the College of Literature, Science, and Arts at the University of Michigan. In 2007, she was jointly appointed as group leader of correlated electron materials in the Condensed Matter Physics and Materials Science Department at Brookhaven Lab and professor in the Department of Physics and Astronomy at Stony Brook University.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of
Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory
conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more www.bnl.gov/newsroom, or follow Brookhaven Lab on Twitter twitter.com/BrookhavenLab.

For more information, please click here

Contacts:
Diane Greenberg
631 344-2347


Mona S. Rowe
631 344-5056

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instrumentsí TritonTMXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Physics

Helium 'balloons' offer new path to control complex materials June 27th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Helium 'balloons' offer new path to control complex materials June 27th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Nanomedicine

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Chivalrous Knight Does Pro Bono June 27th, 2015

Green Chemistry Methods Used in Iran to Produce Zinc Oxide Nanoparticles June 27th, 2015

Announcements

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instrumentsí TritonTMXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Homeland Security

Iranian Scientists Design Nano Device to Detect Cyanogen Toxic Gas June 23rd, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Optics, nanotechnology combined to create low-cost sensor for gases April 3rd, 2015

Alliances/Trade associations/Partnerships/Distributorships

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Dyesol Joins Solliance as an Industrial Partner June 17th, 2015

Framework materials yield to pressure June 11th, 2015

The European project SVARNISH, a step forward in the food packaging sector June 11th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project