Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene electronics

Researchers Raghunath Murali and graduate student Kevin Brenner(front) perform electrical measurements on a graphene sample under high vacuum in a cryogenic probe station.  Credit: Georgia Tech Photo: Gary Meek
Researchers Raghunath Murali and graduate student Kevin Brenner(front) perform electrical measurements on a graphene sample under high vacuum in a cryogenic probe station. Credit: Georgia Tech Photo: Gary Meek

Abstract:
Single-step technique produces both p-type and n-type doping for future graphene devices

Graphene electronics

Atlanta, GA | Posted on February 11th, 2010

A simple one-step process that produces both n-type and p-type doping of large-area graphene surfaces could facilitate use of the promising material for future electronic devices. The doping technique can also be used to increase conductivity in graphene nanoribbons used for interconnects.

By applying a commercially-available spin-on-glass (SOG) material to graphene and then exposing it to electron-beam radiation, researchers at the Georgia Institute of Technology created both types of doping by simply varying the exposure time. Higher levels of e-beam energy produced p-type areas, while lower levels produced n-type areas.

The technique was used to fabricate high-resolution p-n junctions. When properly passivated, the doping created by the SOG is expected to remain indefinitely in the graphene sheets studied by the researchers.

"This is an enabling step toward making possible complementary metal oxide graphene transistors," said Raghunath Murali, a senior research engineer in Georgia Tech's Nanotechnology Research Center.

A paper describing the technique appears this week in the journal Applied Physics Letters. The research was supported by the Semiconductor Research Corporation and the Defense Advanced Research Projects Agency (DARPA) through the Interconnect Focus Center.

In the new doping process, Murali and graduate student Kevin Brenner begin by removing flakes of graphene one to four layers thick from a block of graphite. They place the material onto a surface of oxidized silicon, then fabricate a four-point contact device.

Next, they spin on films of hydrogen silsesquoxane (HSQ), then cure certain portions of the resulting thin film using electron beam radiation. The technique provides precise control over the amount of radiation and where it is applied to the graphene, with higher levels of energy corresponding to more cross-linking of the HSQ.

"We gave varying doses of electron-beam radiation and then studied how it influenced the properties of carriers in the graphene lattice," Murali said. "The e-beam gave us a fine range of control that could be valuable for fabricating nanoscale devices. We can use an electron beam with a diameter of four or five nanometers that allows very precise doping patterns."

Electronic measurements showed that a graphene p-n junction created by the new technique had large energy separations, indicating strong doping effects, he added.

Researchers elsewhere have demonstrated graphene doping using a variety of processes including soaking the material in various solutions and exposing it to a variety of gases. The Georgia Tech process is believed to be the first to provide both electron and hole doping from a single dopant material.

Doping processes used for graphene are likely to be significantly different from those established for silicon use, Murali said. In silicon, the doping step substitutes atoms of a different material for silicon atoms in the material's lattice.

In the new single-step process for graphene, the doping is believed to introduce atoms of hydrogen and oxygen in the vicinity of the carbon lattice. The oxygen and hydrogen don't replace carbon atoms, but instead occupy locations atop the lattice structure.

"Energy applied to the SOG breaks chemical bonds and releases hydrogen and oxygen which bond with the carbon lattice," Murali said. "A high e-beam energy converts the whole SOG structure to more of a network, and then you have more oxygen than hydrogen, resulting in a p-type doping."

In volume manufacturing, the electron beam radiation would likely be replaced by a conventional lithography process, Murali said. Varying the reflectance or transmission of the mask set would control the amount of radiation reaching the SOG, and that would determine whether n-type or p-type areas are created.

"Making everything in a single step would avoid some of the expensive lithography steps," he said. "Gray-scale lithography would allow fine control of doping across the entire surface of the wafer."

For doping bulk areas such as interconnects that do not require patterning, the researchers simply coat the area with HSQ and expose it to a plasma source. The technique can make the nanoribbons up to 10 times more conductive than untreated graphene.

Because HSQ is already familiar to the microelectronics industry, the one-step approach to doping could help integrate graphene into existing processes, avoiding a disruption of the massive semiconductor design and fabrication system, Murali noted.

Over the past two years, researchers in the Nanotechnology Research Center had observed changes caused by application of HSQ during electrical testing. Only recently did they take a closer look at what was happening to understand how to take advantage of the phenomenon.

For the future, they'd like to better understand how the process works and whether other polymers might provide better results.

"We need to have a better understanding of how to control this process because variability is one of the issues that must be controlled to make manufacturing feasible," Murali explained. "We are trying to identify other polymers that may provide better control or stronger doping levels."

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's top research universities, distinguished by its commitment to improving the human condition through advanced science and technology.

Georgia Tech's campus occupies 400 acres in the heart of the city of Atlanta, where 20,000 undergraduate and graduate students receive a focused, technologically based education.

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Chip Technology

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Silicon Catalyst Announces Partnership With imec to Support Semiconductor Start-Ups February 23rd, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE