Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Holst Centre, imec, TNO record performance of dual-gate organic TFT-based RFID circuit

64-bit organic transponder chip based on dual-gate thin-film-transistor technology, achieving 4.3kb/s data rate.
64-bit organic transponder chip based on dual-gate thin-film-transistor technology, achieving 4.3kb/s data rate.

Abstract:
At today's International Solid State Circuit Conference (ISSCC), Holst Centre, imec and TNO present a dual-gate-based organic RFID chip with record data rate and lowest reported operating voltage. For the first time, the advantages of dual gate transistors in circuit speed and robustness have thereby been exploited in a complex organic-electronic circuit.

Holst Centre, imec, TNO record performance of dual-gate organic TFT-based RFID circuit

Eindhoven, the Netherlands and Leuven, Belgium | Posted on February 10th, 2010

Organic RFID tags are one of the drivers of flexible electronics research and development. Over the previous years, Holst Centre, imec and TNO, have been successful in reporting state-of-the art results on major conferences, such as ISSCC and IEDM. The current result of a 64-bit transponder circuit at 4.3kb/s shows an improvement of over a factor two compared to the result reported last year at ISSCC. What's more, results show that chips start to operate at lower voltages (down to 10V), making them more suitable for capacitive and inductive coupling with a readout station.

Main reason behind the increased performance is the use of a dual gate unipolar transistor technology, adapted from rollable-display company Polymer Vision, one of the partners in the Holst Centre research programs. Using a dual gate allows controlling the threshold voltage (Vt) and the thus obtained multiple-Vt technology leads to more robust circuits.

Dual-gate organic TFT (thin-film transistor) circuits have been reported before, but had never surpassed the complexity of basic inverters. Thanks to the tight collaboration within mixed teams of circuit designers and technology developers, Holst Centre, imec and TNO now report 99-stage dual-gate ring oscillators in various topologies, plus 64-bit RFID transponder chips using the same architecture.

Further and ongoing work will demonstrate the viability of the technology towards industrial uptake. Holst Centre therefore gathers leading industrial players from across the value chain around its shared research roadmaps. The work is the result of a close collaboration between TNO and imec teams in Eindhoven and Leuven.

At this week's International Solid State Circuit Conference, imec and Holst Centre present their newest breakthroughs in ultra-low power design for wireless communications and wireless sensor networks and in organic electronics with an impressive number of contributions including 10 reviewed publications and 6 contributions to tutorials and workshops.

This news release is based on paper 7.4: Robust Digital Design in Organic Electronics by Dual-Gate Technology

####

About imec
Imec performs world-leading research in nano-electronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.
Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,650 people includes over 550 industrial residents and guest researchers. In 2008, imec's revenue (P&L) was 270 million euro.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nutĒ), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government) and imec Taiwan (IMEC Taiwan Co.).

About Holst Centre

Holst Centre is an independent open-innovation R&D centre that develops generic technologies for Wireless Autonomous Transducer Solutions and for Systems-in-Foil. A key feature of Holst Centre is its partnership model with industry and academia around shared roadmaps and programs. It is this kind of cross-fertilization that enables Holst Centre to tune its scientific strategy to industrial needs.

Holst Centre was set up in 2005 by imec (Flanders, Belgium) and TNO (The Netherlands) with support from the Dutch Ministry of Economic Affairs and the Government of Flanders. It is named after Gilles Holst, a Dutch pioneer in Research and Development and first director of Philips Research.
Located on High Tech Campus Eindhoven, Holst Centre benefits from the state-of-the-art on-site facilities. Holst Centre has over 150 employees from around 25 nationalities and a commitment from over 20 industrial partners. More information: www.holstcentre.com

For more information, please click here

Contacts:
Holst Centre
Koen Snoeckx
Communication Manager

T: +31 (0)40 277 40 91
M: +31 (0)612 71 98 43

imec
Katrien Marent
Director of External Communications

T: +32 (0)16 28 18 80
M: +32 (0)474 30 28 66

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Chip Technology

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Announcements

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Events/Classes

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Leti Innovation Day in Lyon Will Explore New Security Challenges and Responses for a Safe Connected World June 15th, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Novel gene therapy shows potential for lung repair in asthma May 18th, 2016

Alliances/Trade associations/Partnerships/Distributorships

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

French Research Team Helps Extend MRI Detection of Diseases & Lower Health-Care Costs: CEA, INSERM and G2ELab Brings Grenoble Regionís Expertise In Advanced Medicine & Magnetism Applications to H2020 IDentIFY Project June 21st, 2016

Research showing why hierarchy exists will aid the development of artificial intelligence June 13th, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic