Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano imagining takes turn for the better

An electron microscope photo from the new paper shows nanorods about 75 nanometers long and 25 nanometers wide on a glass slide at 90-degree angles to each other. An adjacent photothermal image shows them as pixilated smudges.
An electron microscope photo from the new paper shows nanorods about 75 nanometers long and 25 nanometers wide on a glass slide at 90-degree angles to each other. An adjacent photothermal image shows them as pixilated smudges.

Abstract:
Photothermal technique provides new way to track nanoparticles

Nano imagining takes turn for the better

Houston, TX | Posted on February 3rd, 2010

Stephan Link wants to understand how nanomaterials align, and his lab's latest work is a step in the right direction.

Link's Rice University group has found a way to use gold nanorods as orientation sensors by combining their plasmonic properties with polarization imaging techniques.

That may make it possible to see and perhaps track single nanoparticles over long periods. It would give researchers new information about materials, including living systems, that incorporate them.

"With a spherical particle, you don't have any information about how it's oriented," said Link, an assistant professor of chemistry and electrical and computer engineering at Rice. "We wanted to see if we could determine the orientation of the nanorods, and eventually we'd like to be able to measure the orientation of the environment they're in. We think this technique could be really useful for that."

Link, primary author Wei-Shun Chang, a Rice research scientist, and their collaborators reported their results this week in the online edition of the Proceedings of the National Academy of Sciences.

Seeing a single nanoparticle is nothing new. A scanning tunneling microscope (STM) can capture images of particles down to a few nanometers; particles tagged with fluorescent molecules can be seen for as long as the fluorophores are active. Link used this latter method to show nanocars rolling at room temperature last year.

But there are problems with each of those techniques. STMs see nanotubes or quantum dots just fine as long as they're more or less isolated on a conductive surface. But in the wild, the particles would get lost amid the clutter of everything else the microscope sees. And while fluorophores can help pick particles out of the crowd, they can deteriorate in as little as 30 seconds, which limits their usefulness.

Gold nanorods can be "lit up" at will. Lasers at particular wavelengths excite surface plasmons that absorb the energy and emit a heat signature that can be detected by a probe laser. Because plasmons are highly polarized along a nanorod's length, reading the signal while turning the polarization of the laser tells researchers precisely how the rod is oriented.

An electron microscope photo from the new paper shows nanorods about 75 nanometers long and 25 nanometers wide on a glass slide at 90-degree angles to each other. An adjacent photothermal image shows them as pixilated smudges. The smudges are strongest when the laser polarization aligns lengthwise with the nanorods, but they disappear when the laser polarization and rods are 90 degrees out of phase.

"With plasmonics, you always have two properties: absorption and scattering," Link said. "Depending on the size, one or the other dominates. What's unique is that it's now possible to do both on the same structure or do it individually -- so we can only measure absorption or only measure scattering."

Nanorods much smaller than 50 nanometers are not detectable by some scattering methods, Link said, but photothermal detection should work with metallic particles as small as five nanometers; this makes them useful for biological applications. "These gold nanorods are biocompatible. They are not toxic to cells," said Chang, noting their similarity to gold nanoshells currently in human cancer therapy trials based on research by Rice scientists Naomi Halas and Jennifer West.

"Our work is more geared to the fundamentals," Link said of the basic nature of his group's research. "Maybe we can optimize the conditions, and then a physician or somebody who's engineering a probe can take it from there.

"Our place is a little further down the chain of development. I'm happy with that."

Co-authors of the paper are Rice graduate students Ji Won Ha and Liane Slaughter. The Robert A. Welch Foundation and 3M supported the work.

View the paper at www.pnas.org/content/early/2010/01/25/0910127107.abstract.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
Associate Director for National Media Relations
Rice University
Direct: 713-348-6327
Cell: 612-702-9473

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Possible Futures

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Sensors

The next generation of carbon monoxide nanosensors May 26th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Discoveries

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Announcements

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Tools

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

Quantum Dots/Rods

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Superfast light source made from artificial atom April 28th, 2016

Nanobiotechnology

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic