Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researcher suggests new memory storage mineral

A representation of the mineral kotoite's crystal structure. The oxygen atoms are red, and the magnesium atoms are located at the centers of the green octahedra. The boron atoms are located at the centers of the blue triangles connecting the oxygen atoms. Derek Stewart.
A representation of the mineral kotoite's crystal structure. The oxygen atoms are red, and the magnesium atoms are located at the centers of the green octahedra. The boron atoms are located at the centers of the blue triangles connecting the oxygen atoms. Derek Stewart.

Abstract:
Breakthroughs in electronics often are the result of finding just the right material for a device -- like the tungsten in light bulbs or the silicon in transistors. Now, a Cornell scientist believes that the mineral kotoite could be an ideal insulator for memory storage devices called magnetic tunnel junctions, found in computers, cell phones and magnetic field sensors.

Researcher suggests new memory storage mineral

Ithaca, NY | Posted on January 21st, 2010

The work, building on previous research by other Cornell scientists, is published by Derek Stewart, the Cornell NanoScale Science and Technology Facility's computational research associate, in the Dec. 17 online edition of Nano Letters (to appear later in print).

Magnetic tunnel junctions are made of a sandwich of two magnets, typically iron-based, with an oxide in the middle only nanometers thick. (A nanometer is one-billionth of a meter.) Electrons "tunnel" between the two magnets, and the oxide filters information from the electrons' spin states to create what is called nonvolatile memory, which doesn't require electricity to store information. These junctions are also used as very sensitive magnetic sensors or read heads for hard drives, since the device currents depend on the relative orientation of the iron layers' magnetic poles.

Cornell researchers, including Robert Buhrman, the John Edson Sweet Professor of Engineering, and Dan Ralph, the Horace White Professor of Physics, have been on the leading edge of this technology for several years.

In industry today, most magnetic tunnel junctions use aluminum oxide as the insulator. But in labs across the world, magnesium oxide is being tested as a next-generation insulator, because its cubic crystal structure matches well with the metallic leads, allowing more efficient filtering of electrons. John Read, a former graduate student in Buhrman's lab (now a postdoctoral associate at the National Institute of Standards and Technology), discovered by accident that the element boron, which he had used at Cornell while fabricating magnetic tunnel junctions to help smooth the material interfaces, was leaking into the insulators and forming a crystal, rather than diffusing away as intended. Yet the devices still worked.

Curious, the team tapped Stewart's computational expertise to work backward and figure out what specific material may have been inadvertently created between the two magnets as a result of the boron contamination.

Density functional calculations brought Stewart to kotoite (Mg3B2O6), a magnesium oxide that also has two boron atoms, which matches well with the magnets' chemistry, allows good electron filtering, and has a slightly different crystal shape than plain magnesium oxide (MgO). He also demonstrated that the mineral's crystal shape -- orthorhombic, as opposed to magnesium oxide's cubic symmetry -- could lead to even better electron spin filtering.

"Derek did a beautiful job of demonstrating that the symmetry arguments that one makes for magnesium oxide can be demonstrated for [kotoite]," Read said.

Calculations were done on the Intel Cluster at CNF, which is funded by the National Science Foundation.

####

About Cornell University
Once called "the first American university" by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

Today's Cornell reflects this heritage of egalitarian excellence. It is home to the nation's first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Anne Ju
(607) 255-9735

Related Information

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

News and information

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Possible Futures

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Memory Technology

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Discoveries

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Announcements

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic