Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UAlbany NanoCollege Receives Nearly $4M in Federal Funding to Enable Nanoscale Education and Research

Abstract:
Grants support acquisition of specialized Atomic Force Microscope for nanobioscience research, as well as novel innovations for health care, clean energy, military, aerospace and automotive sectors

UAlbany NanoCollege Receives Nearly $4M in Federal Funding to Enable Nanoscale Education and Research

Albany, NY | Posted on January 13th, 2010

The College of Nanoscale Science and Engineering ("CNSE") of the University at Albany announced today that it has been selected to receive nearly $4 million in federal funding for a variety of educational and research initiatives that will support nanotechnology-enabled innovations across multiple sectors, from health care and clean energy to the military, aerospace and automotive industries.

The funding includes $610,000 received through the National Science Foundation's ("NSF") prestigious Major Research Instrumentation ("MRI") program for the acquisition of an Atomic Force Microscope ("AFM") that employs specialized Laser Scanning Confocal Microscopy ("LSCM"). This cutting-edge instrumentation - the first of its kind in upstate New York - provides the unique capability to deploy non-invasive, high-resolution optical imaging technology to obtain 3D images of biomolecules and other cellular structures, which is increasingly critical for biological research conducted at the nanoscale.

Dr. James Castracane, Professor and Head of CNSE's Nanobioscience Constellation, and Dr. Nathaniel Cady, CNSE Assistant Professor of Nanobioscience, will lead programs utilizing the AFM/LSCM to enable advanced cross-disciplinary research, including dynamic measurement of cell-surface and nucleic acid-protein interactions, mechanical studies of stem cell differentiation, and the elucidation of 3D tissue development. Additionally, the AFM/LSCM will serve as a flagship instrument for bridging research collaborations between CNSE and a variety of institutions, including the UAlbany Department of Biological Sciences and the New York State Health Department's Wadsworth Institute.

George M. Philip, President of the University at Albany, said, "These awards provide critical resources to enhance the world-class educational paradigm and unparalleled research infrastructure at the College of Nanoscale Science and Engineering. This funding further supports UAlbany's recognition as one of the world's leading research universities, and offers new and exciting opportunities for our students and faculty to compete and succeed in the innovation economy."

Dr. Alain E. Kaloyeros, Senior Vice President and Chief Executive Officer of CNSE, said, "The pioneering education and leading-edge research funded by these prestigious grants underscores the UAlbany NanoCollege's growing global recognition as a nexus for world-class nanoscale education and innovation, as well as the ability of nanotechnology to enable critical solutions that address real-world challenges. I congratulate Professors Castracane, Cady, Shahedipour-Sandvik, Lee, Huang and Efstathiadis on the receipt of these awards, and look forward to seeing the results of their research, which promises game-changing advances with important 21st century applications."

Dr. Shadi Shahedipour-Sandvik, CNSE Associate Professor of Nanoengineering, was awarded three federal grants for innovative nanoscale research initiatives: $450,000 through the U.S. Army Research, Development and Engineering Command ("RDECOM") to improve the operation and failure mechanisms in radio-frequency power devices to support a host of military applications; $400,000 through the NSF for an integrated educational and research program focusing on advanced optoelectronic materials, in partnership with Penn State University; and $400,000 through NASA's Jet Propulsion Laboratory for two programs to develop solid-state technologies that enable improved performance for advanced imaging systems, addressing one of NASA's major scientific priorities.

Dr. Ji Ung Lee, CNSE Empire Innovation Professor of Nanoscale Engineering, received federal funding to support two research initiatives: $525,000 through the U.S. Naval Research Laboratory ("NRL") to develop novel nanomaterials for advanced CMOS devices for use in military and space applications, and $300,000 through the U.S. Air Force Research Laboratory ("AFRL") to examine novel methods for growing carbon nanotube and graphene materials for a wide range of applications, including post-CMOS electronics, low-loss transmission lines, and the development of super-strength, lightweight composites.

Dr. Cady was awarded $700,000 through the AFRL to use nanomaterials to develop and deploy novel computer chip circuitries for memory storage and complex logic functions, such as neuromorphic computing, which uses silicon-based digital technologies to enable high-performance computing. The research will support a variety of defense-related applications, including improved radar detection, enhanced aircraft aerodynamics, and more effective simulations and modeling processes and systems for military readiness.

Dr. Mengbing Huang, CNSE Associate Professor of Nanoscience, was awarded $234,000 through the NSF for innovative research designed to develop and deploy improved sensors and monitoring systems for combustion processes that are used in a variety of industrial applications. His efforts will focus on the use of ion beam methods for fabricating robust optical waveguides within single-crystal sapphire fiber optics technology to address common challenges caused by high temperature, high pressure and highly reactive chemicals used in harsh environmental conditions.

Dr. Harry Efstathiadis, CNSE Associate Professor of Nanoengineering, received $100,000 through the U.S. Department of Energy ("DOE") to further research for the development of quantum well thermoelectric technologies for use in improving air conditioning systems for automobiles and trucks. The new technologies will produce cooling that is superior to current vapor compression systems, while reducing fuel consumption, eliminating environmentally harmful refrigerant gases, and enabling reductions in noise, vibration and overall vehicle maintenance costs.

####

About UAlbany
The UAlbany CNSE is the first college in the world dedicated to education, research, development, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE's Albany NanoTech Complex is the most advanced research enterprise of its kind at any
university in the world. With over $5 billion in high-tech investments, the 800,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 80,000 square feet of Class 1 capable cleanrooms. More than 2,500 scientists, researchers, engineers, students, and faculty work on site at CNSE's Albany NanoTech, from companies including IBM, AMD, GlobalFoundries, SEMATECH, Toshiba, Applied Materials, Tokyo Electron, ASML, Novellus Systems, Vistec Lithography and Atotech.

For more information, please click here

Contacts:
Steve Janack
CNSE Vice President for Marketing and Communications
518-956-7322

Copyright © UAlbany

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical ďdeep learningĒ: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Military

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Environment

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Can crab shells provide a 'green' solution to malaria? Study shows how a mixture of chitin and silver nanoparticles inhibits growth of mosquito larvae May 12th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Automotive/Transportation

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the companyís 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Aerospace/Space

National Space Society and Cornell University's Cislunar Explorers Celebrate The Team's First Place Victory in NASA's Cube Quest Challenge June 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGMís three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

Nanobiotechnology

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project