Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Growing Europe’s nanowires

Abstract:
European researchers have developed state-of-the-art nanowire ‘growing' technology, opening the way for faster, smaller microchips and creating a promising new avenue of research and industrial development in Europe.

Growing Europe’s nanowires

EU | Posted on January 6th, 2010

Nanowires are a promising new technology that could meet rapidly rising performance requirements for integrated circuit design over the next ten years. They are tiny wires just tens of nanometres in diameter and micrometers in length.

They could mean smaller, faster and lower power electronics, and lead to entirely novel architectures such as 3D microchips - a vertical stack of circuitry that can massively increase the size of circuits for the same footprint.

Nanowires are so narrow they are often called ‘one-dimensional' structures because the width of the wire constrains the sideways movement of electrons as they pass through the wire. Also, the cylindrical geometry allows the most efficient electrostatic gating technology.

Unsurprisingly at this scale, nanowires demonstrate many characteristics that offer the potential for novel circuits and architectures, and physicists are very excited. The Japanese pioneered the field with the USA taking up the work, and with a few European teams entering soon after.

Raising nanowires... and patents

But the Europeans are on their way. Recent work at the NODE project led to world-class technology and 40 patents. "Silicon technology becomes very challenging when you get down to 10-15nm," explains Lars Samuelson, director of the Nanometer Structure Consortium at Lund University and coordinator of the NODE project.

"One of the problems of the [current] top-down approach is that it introduces harsh environments and you end up with devices that may be dominated by defects."

NODE's nanowires are ‘grown' from the bottom up, like crystals, into vertical structures. "We call it ‘guided self-assembly', and it is a ‘bottom-up' process that can result in fewer defects," Samuelson says.

Vertical nanowires can consist of different materials, by simply altering the depositing material, so the wire takes on layers with different characteristics. "There are many potential opportunities for developing new technologies," he says. "This vertical arrangement may be the route to 3D circuit design as well as to realise monolithic on-chip optoelectronics."

NODE focused on combining silicon with indium arsenide (Si:InAs) and silicon with silicon germanium (Si:SiGe), two very promising materials. "Indium arsenide is inherently very fast and, as such, it was of particular interest to our work," remarks Samuelson.

Breakthroughs

The project looked at every link in the nanowire production chain, from growth, processing on an industrial scale, to characterisation and integration. "And one of the big challenges of the project was the integration of our work with current silicon processing technology, so there was a big effort on processing," Samuelson stresses.

For this, characterisation studies were important to examine the different materials used and the effects induced by the nanowire structure. NODE also examined the characteristics of potential devices, such as field effect transistors (FET). Finally, the team looked at integrating these devices into circuits.

It is a huge body of work and led to some real breakthroughs. "One of the breakthroughs was the... perfect deposition of high-K dielectrics coating the nanowires and serving as a dielectric in the wrap-gate transistors," reveals Samuelson. "We developed a very good technique for this."

High-K dielectrics overcome some of the limits of silicon dioxide at very small scales and are a promising strategy for further miniaturisation of integrated circuits.

"As part of this research, we have also encountered problems and possible roadblocks [to further] development, such as quite severe problems in growing Si nanowires using gold catalysts", adds Samuelson.

State of the art

"This technology is not ready for industrial applications, and whether it will be three, six or nine years before it appears industrially, I cannot say," Samuelson warns. "But we established the state of the art, we have the best results."

The project has announced Europe's entry into an exciting new field of nanotechnology and developed a core expertise on the continent. Over 100 scientific papers will emerge from the work when it finally winds down.

The development of European expertise could not come at a better time. Industrial players like IBM, Samsung and some of the leading Singapore labs began developing planar, or horizontal, nanowire technology shortly after NODE began their efforts. The technology is coming of age.

The NODE project received funding from the ICT strand of the EU's Sixth Framework Programme for research.

####

For more information, please click here

Copyright © ICT Results

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Possible Futures

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Chip Technology

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Self Assembly

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

Nanoelectronics

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Discoveries

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Patents/IP/Tech Transfer/Licensing

Researchers develop new way to manufacture nanofibers May 21st, 2015

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Industrial

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project