Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Growing Europe’s nanowires

Abstract:
European researchers have developed state-of-the-art nanowire ‘growing' technology, opening the way for faster, smaller microchips and creating a promising new avenue of research and industrial development in Europe.

Growing Europe’s nanowires

EU | Posted on January 6th, 2010

Nanowires are a promising new technology that could meet rapidly rising performance requirements for integrated circuit design over the next ten years. They are tiny wires just tens of nanometres in diameter and micrometers in length.

They could mean smaller, faster and lower power electronics, and lead to entirely novel architectures such as 3D microchips - a vertical stack of circuitry that can massively increase the size of circuits for the same footprint.

Nanowires are so narrow they are often called ‘one-dimensional' structures because the width of the wire constrains the sideways movement of electrons as they pass through the wire. Also, the cylindrical geometry allows the most efficient electrostatic gating technology.

Unsurprisingly at this scale, nanowires demonstrate many characteristics that offer the potential for novel circuits and architectures, and physicists are very excited. The Japanese pioneered the field with the USA taking up the work, and with a few European teams entering soon after.

Raising nanowires... and patents

But the Europeans are on their way. Recent work at the NODE project led to world-class technology and 40 patents. "Silicon technology becomes very challenging when you get down to 10-15nm," explains Lars Samuelson, director of the Nanometer Structure Consortium at Lund University and coordinator of the NODE project.

"One of the problems of the [current] top-down approach is that it introduces harsh environments and you end up with devices that may be dominated by defects."

NODE's nanowires are ‘grown' from the bottom up, like crystals, into vertical structures. "We call it ‘guided self-assembly', and it is a ‘bottom-up' process that can result in fewer defects," Samuelson says.

Vertical nanowires can consist of different materials, by simply altering the depositing material, so the wire takes on layers with different characteristics. "There are many potential opportunities for developing new technologies," he says. "This vertical arrangement may be the route to 3D circuit design as well as to realise monolithic on-chip optoelectronics."

NODE focused on combining silicon with indium arsenide (Si:InAs) and silicon with silicon germanium (Si:SiGe), two very promising materials. "Indium arsenide is inherently very fast and, as such, it was of particular interest to our work," remarks Samuelson.

Breakthroughs

The project looked at every link in the nanowire production chain, from growth, processing on an industrial scale, to characterisation and integration. "And one of the big challenges of the project was the integration of our work with current silicon processing technology, so there was a big effort on processing," Samuelson stresses.

For this, characterisation studies were important to examine the different materials used and the effects induced by the nanowire structure. NODE also examined the characteristics of potential devices, such as field effect transistors (FET). Finally, the team looked at integrating these devices into circuits.

It is a huge body of work and led to some real breakthroughs. "One of the breakthroughs was the... perfect deposition of high-K dielectrics coating the nanowires and serving as a dielectric in the wrap-gate transistors," reveals Samuelson. "We developed a very good technique for this."

High-K dielectrics overcome some of the limits of silicon dioxide at very small scales and are a promising strategy for further miniaturisation of integrated circuits.

"As part of this research, we have also encountered problems and possible roadblocks [to further] development, such as quite severe problems in growing Si nanowires using gold catalysts", adds Samuelson.

State of the art

"This technology is not ready for industrial applications, and whether it will be three, six or nine years before it appears industrially, I cannot say," Samuelson warns. "But we established the state of the art, we have the best results."

The project has announced Europe's entry into an exciting new field of nanotechnology and developed a core expertise on the continent. Over 100 scientific papers will emerge from the work when it finally winds down.

The development of European expertise could not come at a better time. Industrial players like IBM, Samsung and some of the leading Singapore labs began developing planar, or horizontal, nanowire technology shortly after NODE began their efforts. The technology is coming of age.

The NODE project received funding from the ICT strand of the EU's Sixth Framework Programme for research.

####

For more information, please click here

Copyright © ICT Results

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

SUNY Polytechnic Institute Hosts Massive Crowd of More Than 3,000 People Who Attended Community Day Activities Across New York State: CNSE’s ‘NANOvember’ kickoff event highlights New York State’s growing high-tech sector with open house events in Albany, Utica, and Rochester November 3rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Chip Technology

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Self Assembly

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Nanoelectronics

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Patents/IP/Tech Transfer/Licensing

Dicerna Announces License Agreement with Tekmira to Advance Dicerna’s PH1 Development Program November 17th, 2014

First genetic-based tool to detect circulating cancer cells in blood: NanoFlares light up individual cells if breast cancer biomarker is present November 17th, 2014

Ki-Bum Lee Patents Technology To Advance Stem Cell Therapeutics November 13th, 2014

'Direct writing' of diamond patterns from graphite a potential technological leap November 5th, 2014

Industrial

A*STAR SIMTech wins international award for breaking new ground in actuators: SIMTech invention can be used in an array of industries, and is critical for next generation ultra-precision systems November 24th, 2014

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

OCSiAl Builds Worldwide Partnership Network November 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE