Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 'Ferropaper' is new technology for small motors, robots

Purdue researchers have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers. Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering, holds a miniature birdlike shape made from the material. The wings move slowly, but the structure is not capable of flight. (Purdue University photo/Andrew Hancock)
Purdue researchers have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers. Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering, holds a miniature birdlike shape made from the material. The wings move slowly, but the structure is not capable of flight. (Purdue University photo/Andrew Hancock)

Abstract:
Researchers at Purdue University have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers.

'Ferropaper' is new technology for small motors, robots

West Lafayette, IN | Posted on January 5th, 2010

The material is made by impregnating ordinary paper - even newsprint - with a mixture of mineral oil and "magnetic nanoparticles" of iron oxide. The nanoparticle-laden paper can then be moved using a magnetic field.

"Paper is a porous matrix, so you can load a lot of this material into it," said Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering.

The new technique represents a low-cost way to make small stereo speakers, miniature robots or motors for a variety of potential applications, including tweezers to manipulate cells and flexible fingers for minimally invasive surgery.

"Because paper is very soft it won't damage cells or tissue," Ziaie said. "It is very inexpensive to make. You put a droplet on a piece of paper, and that is your actuator, or motor."

Once saturated with this "ferrofluid" mixture, the paper is coated with a biocompatible plastic film, which makes it water resistant, prevents the fluid from evaporating and improves mechanical properties such as strength, stiffness and elasticity.

Findings will be detailed in a research paper being presented during the 23rd IEEE International Conference on Micro Electro Mechanical Systems on Jan. 24-28 in Hong Kong. The paper was written by Ziaie, electrical engineering doctoral student Pinghung Wei and physics doctoral student Zhenwen Ding.

Because the technique is inexpensive and doesn't require specialized laboratory facilities, it could be used in community colleges and high schools to teach about micro robots and other engineering and scientific principles, Ziaie said.

The magnetic particles, which are commercially available, have a diameter of about 10 nanometers, or billionths of a meter, which is roughly 1/10,000th the width of a human hair. Ferro is short for ferrous, or related to iron.

"You wouldn't have to use nanoparticles, but they are easier and cheaper to manufacture than larger-size particles," Ziaie said. "They are commercially available at very low cost."

The researchers used an instrument called a field-emission scanning electron microscope to study how well the nanoparticle mixture impregnates certain types of paper.

"All types of paper can be used, but newspaper and soft tissue paper are especially suitable because they have good porosity," Ziaie said.

The researchers fashioned the material into a small cantilever, a structure resembling a diving board that can be moved or caused to vibrate by applying a magnetic field.

"Cantilever actuators are very common, but usually they are made from silicon, which is expensive and requires special cleanroom facilities to manufacture," Ziaie said. "So using the ferropaper could be a very inexpensive, simple alternative. This is like 100 times cheaper than the silicon devices now available."

The researchers also have experimented with other shapes and structures resembling Origami to study more complicated movements.

The research is based at the Birck Nanotechnology Center in Purdue's Discovery Park.

Note to Journalists: An electronic copy of the research paper and a video showing a bird-shaped specimen moving its wings is available by contacting Emil Venere, Purdue News Service, at 765-494-4709,

ABSTRACT

Ferro-Paper Actuators

Zhenwen Ding, Pinghung Wei, and Babak Ziaie

Purdue University

In this paper, we report on an inexpensive method for fabricating mm-scale magnetic actuators using ferrofluid impregnated paper. Different types of papers were loaded with light oil-based ferrofluid, cut to cantilever shape, coated with parylene C, and tested with an external magnetic field. Cleanroom and filter paper were able to generate large forces (>40mg equivalent force) whereas soft tissue paper provided the largest deflection (40° tip angle). Coating parylene on ferro-paper not only improves the mechanical properties but also allows the ferro-paper actuator to work in liquid environment.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
(765) 494-4709


Source:
Babak Ziaie
(765) 494-0725

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

MEMS

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Mirrorcle Technologies Opens New Company Headquarters May 27th, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Aerospace/Space

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Nanobiotechnology

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE