Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Ferropaper' is new technology for small motors, robots

Purdue researchers have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers. Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering, holds a miniature birdlike shape made from the material. The wings move slowly, but the structure is not capable of flight. (Purdue University photo/Andrew Hancock)
Purdue researchers have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers. Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering, holds a miniature birdlike shape made from the material. The wings move slowly, but the structure is not capable of flight. (Purdue University photo/Andrew Hancock)

Abstract:
Researchers at Purdue University have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers.

'Ferropaper' is new technology for small motors, robots

West Lafayette, IN | Posted on January 5th, 2010

The material is made by impregnating ordinary paper - even newsprint - with a mixture of mineral oil and "magnetic nanoparticles" of iron oxide. The nanoparticle-laden paper can then be moved using a magnetic field.

"Paper is a porous matrix, so you can load a lot of this material into it," said Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering.

The new technique represents a low-cost way to make small stereo speakers, miniature robots or motors for a variety of potential applications, including tweezers to manipulate cells and flexible fingers for minimally invasive surgery.

"Because paper is very soft it won't damage cells or tissue," Ziaie said. "It is very inexpensive to make. You put a droplet on a piece of paper, and that is your actuator, or motor."

Once saturated with this "ferrofluid" mixture, the paper is coated with a biocompatible plastic film, which makes it water resistant, prevents the fluid from evaporating and improves mechanical properties such as strength, stiffness and elasticity.

Findings will be detailed in a research paper being presented during the 23rd IEEE International Conference on Micro Electro Mechanical Systems on Jan. 24-28 in Hong Kong. The paper was written by Ziaie, electrical engineering doctoral student Pinghung Wei and physics doctoral student Zhenwen Ding.

Because the technique is inexpensive and doesn't require specialized laboratory facilities, it could be used in community colleges and high schools to teach about micro robots and other engineering and scientific principles, Ziaie said.

The magnetic particles, which are commercially available, have a diameter of about 10 nanometers, or billionths of a meter, which is roughly 1/10,000th the width of a human hair. Ferro is short for ferrous, or related to iron.

"You wouldn't have to use nanoparticles, but they are easier and cheaper to manufacture than larger-size particles," Ziaie said. "They are commercially available at very low cost."

The researchers used an instrument called a field-emission scanning electron microscope to study how well the nanoparticle mixture impregnates certain types of paper.

"All types of paper can be used, but newspaper and soft tissue paper are especially suitable because they have good porosity," Ziaie said.

The researchers fashioned the material into a small cantilever, a structure resembling a diving board that can be moved or caused to vibrate by applying a magnetic field.

"Cantilever actuators are very common, but usually they are made from silicon, which is expensive and requires special cleanroom facilities to manufacture," Ziaie said. "So using the ferropaper could be a very inexpensive, simple alternative. This is like 100 times cheaper than the silicon devices now available."

The researchers also have experimented with other shapes and structures resembling Origami to study more complicated movements.

The research is based at the Birck Nanotechnology Center in Purdue's Discovery Park.

Note to Journalists: An electronic copy of the research paper and a video showing a bird-shaped specimen moving its wings is available by contacting Emil Venere, Purdue News Service, at 765-494-4709,

ABSTRACT

Ferro-Paper Actuators

Zhenwen Ding, Pinghung Wei, and Babak Ziaie

Purdue University

In this paper, we report on an inexpensive method for fabricating mm-scale magnetic actuators using ferrofluid impregnated paper. Different types of papers were loaded with light oil-based ferrofluid, cut to cantilever shape, coated with parylene C, and tested with an external magnetic field. Cleanroom and filter paper were able to generate large forces (>40mg equivalent force) whereas soft tissue paper provided the largest deflection (40° tip angle). Coating parylene on ferro-paper not only improves the mechanical properties but also allows the ferro-paper actuator to work in liquid environment.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
(765) 494-4709


Source:
Babak Ziaie
(765) 494-0725

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

MEMS

MEMS/Sensors Drive IoT/E Innovation in Europe: MEMS Executive Congress Europe Speakers Explore Internet of Things/Everything in Automotive, Consumer, Industrial Markets, 9-10, March in Copenhagen February 9th, 2015

STMicroelectronics Leads European Research Project to Develop Next-Generation Optical MEMS: Extension to a project launched in 2013 builds on current efforts to enable technologies for next-generation applications February 4th, 2015

Entegris Launches Dispense System Optimized for 3D and MEMS Applications: New IntelliGen® MV system delivers process efficiencies and defect reduction in dispensing mid-viscosity fluids February 3rd, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

Nanomedicine

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Together, nanotechnology and genetic interference may tackle 'untreatable' brain tumors: Tel Aviv University researchers' groundbreaking strategy stops brain tumor cell proliferation with targeted nanoparticles February 24th, 2015

Aerospace/Space

National Space Society and Space Frontier Foundation announce the formation of the Alliance for Space Development February 25th, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

Mars Science Laboratory (Curiosity) Rover and Science Team Wins the National Space Society's von Braun Award February 13th, 2015

Nanobiotechnology

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

DNA 'cage' could improve nanopore technology February 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE