Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Ferropaper' is new technology for small motors, robots

Purdue researchers have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers. Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering, holds a miniature birdlike shape made from the material. The wings move slowly, but the structure is not capable of flight. (Purdue University photo/Andrew Hancock)
Purdue researchers have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers. Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering, holds a miniature birdlike shape made from the material. The wings move slowly, but the structure is not capable of flight. (Purdue University photo/Andrew Hancock)

Abstract:
Researchers at Purdue University have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers.

'Ferropaper' is new technology for small motors, robots

West Lafayette, IN | Posted on January 5th, 2010

The material is made by impregnating ordinary paper - even newsprint - with a mixture of mineral oil and "magnetic nanoparticles" of iron oxide. The nanoparticle-laden paper can then be moved using a magnetic field.

"Paper is a porous matrix, so you can load a lot of this material into it," said Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering.

The new technique represents a low-cost way to make small stereo speakers, miniature robots or motors for a variety of potential applications, including tweezers to manipulate cells and flexible fingers for minimally invasive surgery.

"Because paper is very soft it won't damage cells or tissue," Ziaie said. "It is very inexpensive to make. You put a droplet on a piece of paper, and that is your actuator, or motor."

Once saturated with this "ferrofluid" mixture, the paper is coated with a biocompatible plastic film, which makes it water resistant, prevents the fluid from evaporating and improves mechanical properties such as strength, stiffness and elasticity.

Findings will be detailed in a research paper being presented during the 23rd IEEE International Conference on Micro Electro Mechanical Systems on Jan. 24-28 in Hong Kong. The paper was written by Ziaie, electrical engineering doctoral student Pinghung Wei and physics doctoral student Zhenwen Ding.

Because the technique is inexpensive and doesn't require specialized laboratory facilities, it could be used in community colleges and high schools to teach about micro robots and other engineering and scientific principles, Ziaie said.

The magnetic particles, which are commercially available, have a diameter of about 10 nanometers, or billionths of a meter, which is roughly 1/10,000th the width of a human hair. Ferro is short for ferrous, or related to iron.

"You wouldn't have to use nanoparticles, but they are easier and cheaper to manufacture than larger-size particles," Ziaie said. "They are commercially available at very low cost."

The researchers used an instrument called a field-emission scanning electron microscope to study how well the nanoparticle mixture impregnates certain types of paper.

"All types of paper can be used, but newspaper and soft tissue paper are especially suitable because they have good porosity," Ziaie said.

The researchers fashioned the material into a small cantilever, a structure resembling a diving board that can be moved or caused to vibrate by applying a magnetic field.

"Cantilever actuators are very common, but usually they are made from silicon, which is expensive and requires special cleanroom facilities to manufacture," Ziaie said. "So using the ferropaper could be a very inexpensive, simple alternative. This is like 100 times cheaper than the silicon devices now available."

The researchers also have experimented with other shapes and structures resembling Origami to study more complicated movements.

The research is based at the Birck Nanotechnology Center in Purdue's Discovery Park.

Note to Journalists: An electronic copy of the research paper and a video showing a bird-shaped specimen moving its wings is available by contacting Emil Venere, Purdue News Service, at 765-494-4709,

ABSTRACT

Ferro-Paper Actuators

Zhenwen Ding, Pinghung Wei, and Babak Ziaie

Purdue University

In this paper, we report on an inexpensive method for fabricating mm-scale magnetic actuators using ferrofluid impregnated paper. Different types of papers were loaded with light oil-based ferrofluid, cut to cantilever shape, coated with parylene C, and tested with an external magnetic field. Cleanroom and filter paper were able to generate large forces (>40mg equivalent force) whereas soft tissue paper provided the largest deflection (40° tip angle). Coating parylene on ferro-paper not only improves the mechanical properties but also allows the ferro-paper actuator to work in liquid environment.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
(765) 494-4709


Source:
Babak Ziaie
(765) 494-0725

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

MEMS

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

MEMS Industry Group Hosts Its First MEMS/Sensors Conference Session at Transducers 2015: MIG Speakers Will Explore Technology Transfer, Emerging MEMS/Sensors, Manufacturing Infrastructure and Process Technology, June 23 in Anchorage June 3rd, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Nanomedicine

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Aerospace/Space

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Discovery paves way for new kinds of superconducting electronics June 22nd, 2015

Deben reports on how the University of Portsmouth use in situ µXCT compressive testing to help answer how materials respond to complex loading conditions June 17th, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project