Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Air Force-Funded Research is Shattering Traditional Notions of Laser Limits

AFOSR-MURI and National Science Foundation-funded professor, Dr. Xiang Zhang has demonstrated at the University of California, Berkeley the world’s smallest semiconductor laser, which may have applications to the Air Force in communications, computing and bio-hazard detection.
AFOSR-MURI and National Science Foundation-funded professor, Dr. Xiang Zhang has demonstrated at the University of California, Berkeley the world’s smallest semiconductor laser, which may have applications to the Air Force in communications, computing and bio-hazard detection.

Abstract:
Air Force Office of Scientific Research and National Science Foundation-funded professor, Dr. Xiang Zhang has demonstrated at the University of California, Berkeley the world's smallest semiconductor laser, which may have applications to the Air Force in communications, computing and bio-hazard detection.

Air Force-Funded Research is Shattering Traditional Notions of Laser Limits

Arlington, VA | Posted on December 9th, 2009

The semiconductor, called a plasmon, can focus light the size of a single protein in a space that is smaller than half its wavelength while maintaining laser-like qualities that allow it to not dissipate over time.

"Proposed almost seven years ago, researchers had been unable to demonstrate a working plasmonic laser until our experiment," said Zhang. "It is an important discovery because it has the potential to eliminate optical loss and make plasmonic-based technologies viable for a broad spectrum of applications."

"Perhaps the biggest gap in our knowledge and the reason it took so long to demonstrate this technology was our challenge of devising a realistic plasmonic laser design," he said. "We developed a strategy to get around this problem by combining semi-conductor nanowires one-thousand times thinner than a human hair with a metal surface separated by an insulating gap of only five nanometers, the size of a single protein molecule."

Because of their ultra small size, Zhang admits that an even more challenging aspect of his research has been in demonstrating how the plasmonic lasers bridge electronics, optics and photonics on the nanometer scale.

"We were ultimately able to exhibit these properties successfully by creating a confined space that was able to hold and sustain light while the experiments were conducted," he noted.

The next generation of plasmonic lasers called nanolasers are even expected to be able to probe and manipulate molecules. They will be of interest to the Air Force because they will advance ultra-sensitive bio-detection, nanoscale optics and enhanced communication systems.

They will also benefit healthcare, optics-based telecommunications and optical computing.

Zhang looks forward to the next phase of research when he and his colleagues will create an electrically operated version of the plasmonic laser, which can be fully integrated with semiconductors without design modification.

by Maria Callier, Air Force Office of Scientific Research

####

About Air Force Office of Scientific Research
The Air Force Office of Scientific Research (AFOSR), located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory (AFRL), AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.

For more information, please click here

Copyright © Air Force Office of Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Possible Futures

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Announcements

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Homeland Security

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Sniffing out a dangerous vapor: University of Utah engineers develop material that can sense fuel leaks and fuel-based explosives March 28th, 2016

Detecting and identifying explosives with single test December 10th, 2015

Military

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Photonics/Optics/Lasers

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Physicists detect the enigmatic spin momentum of light April 26th, 2016

Rare Earth atoms see the light: Physicist Dirk Bouwmeester discovers a promising route for combined optical and solid state-based quantum information processing April 25th, 2016

Manipulating light inside opaque layers April 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic