Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Air Force-Funded Research is Shattering Traditional Notions of Laser Limits

AFOSR-MURI and National Science Foundation-funded professor, Dr. Xiang Zhang has demonstrated at the University of California, Berkeley the world’s smallest semiconductor laser, which may have applications to the Air Force in communications, computing and bio-hazard detection.
AFOSR-MURI and National Science Foundation-funded professor, Dr. Xiang Zhang has demonstrated at the University of California, Berkeley the world’s smallest semiconductor laser, which may have applications to the Air Force in communications, computing and bio-hazard detection.

Abstract:
Air Force Office of Scientific Research and National Science Foundation-funded professor, Dr. Xiang Zhang has demonstrated at the University of California, Berkeley the world's smallest semiconductor laser, which may have applications to the Air Force in communications, computing and bio-hazard detection.

Air Force-Funded Research is Shattering Traditional Notions of Laser Limits

Arlington, VA | Posted on December 9th, 2009

The semiconductor, called a plasmon, can focus light the size of a single protein in a space that is smaller than half its wavelength while maintaining laser-like qualities that allow it to not dissipate over time.

"Proposed almost seven years ago, researchers had been unable to demonstrate a working plasmonic laser until our experiment," said Zhang. "It is an important discovery because it has the potential to eliminate optical loss and make plasmonic-based technologies viable for a broad spectrum of applications."

"Perhaps the biggest gap in our knowledge and the reason it took so long to demonstrate this technology was our challenge of devising a realistic plasmonic laser design," he said. "We developed a strategy to get around this problem by combining semi-conductor nanowires one-thousand times thinner than a human hair with a metal surface separated by an insulating gap of only five nanometers, the size of a single protein molecule."

Because of their ultra small size, Zhang admits that an even more challenging aspect of his research has been in demonstrating how the plasmonic lasers bridge electronics, optics and photonics on the nanometer scale.

"We were ultimately able to exhibit these properties successfully by creating a confined space that was able to hold and sustain light while the experiments were conducted," he noted.

The next generation of plasmonic lasers called nanolasers are even expected to be able to probe and manipulate molecules. They will be of interest to the Air Force because they will advance ultra-sensitive bio-detection, nanoscale optics and enhanced communication systems.

They will also benefit healthcare, optics-based telecommunications and optical computing.

Zhang looks forward to the next phase of research when he and his colleagues will create an electrically operated version of the plasmonic laser, which can be fully integrated with semiconductors without design modification.

by Maria Callier, Air Force Office of Scientific Research

####

About Air Force Office of Scientific Research
The Air Force Office of Scientific Research (AFOSR), located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory (AFRL), AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.

For more information, please click here

Copyright © Air Force Office of Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Possible Futures

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Homeland Security

New method can identify chemical warfare agents more easily: The method could help governments protect people from horrifying toxic effects July 15th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Military

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Photonics/Optics/Lasers

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic