Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Transparent Insulating Film Could Enable Energy-Efficient Displays

In his Johns Hopkins materials science lab, Howard E. Katz adjusts probes used for testing electronic devices. Photo by Will Kirk, Homewoodphoto.jhu.edu.
In his Johns Hopkins materials science lab, Howard E. Katz adjusts probes used for testing electronic devices. Photo by Will Kirk, Homewoodphoto.jhu.edu.

Abstract:
Johns Hopkins materials scientists have found a new use for a chemical compound that has traditionally been viewed as an electrical conductor, a substance that allows electricity to flow through it. By orienting the compound in a different way, the researchers have turned it into a thin film insulator, which instead blocks the flow of electricity, but can induce large electric currents elsewhere. The material, called solution-deposited beta-alumina, could have important applications in transistor technology and in devices such as electronic books.

New Transparent Insulating Film Could Enable Energy-Efficient Displays

Baltimore, MD | Posted on November 9th, 2009

The discovery is described in the November issue of the journal Nature Materials and appears in an early online edition.

"This form of sodium beta-alumina has some very useful characteristics," said Howard E. Katz, a professor of materials science and engineering who supervised the research team. "The material is produced in a liquid state, which means it can easily be deposited onto a surface in a precise pattern for the formation of printed circuits. But when it's heated, it forms a solid, thin transparent film. In addition, it allows us to operate at low voltages, meaning it requires less power to induce useful current. That means its applications could operate with smaller batteries or be connected to a battery instead of a wall outlet."

The transparency and thinness of the material (the hardened film is only on the order of 100 atoms thick) make it ideal for use in the increasingly popular e-book readers, which rely on see-through screens and portable power sources, Katz said. He added that possible transportation applications include instrument readouts that can be displayed in the windshield of an aircraft or a ground vehicle.

The emergence of sodium beta-alumina as an insulator was a surprising development, Katz said. The compound, known for decades, has traditionally been used to conduct electricity and for this reason has been considered as a possible battery component. The material allows charged particles to flow easily parallel to a two-dimensional plane formed within its distinct atomic crystalline arrangement. "But we found that current does not flow nearly as easily perpendicular to the planes, or in unoriented material," Katz said. "The material acts as an insulator instead of a conductor. Our team was the first to exploit this discovery."

The Johns Hopkins researchers developed a method of processing sodium beta-alumina in a way that makes use of this insulation behavior occurring in the form of a thin film. Working with the Johns Hopkins Technology Transfer staff, Katz's team has filed for international patent protection for their discovery.

The lead author of the Nature Materials paper was Bhola N. Pal, who was a postdoctoral fellow in Katz's laboratory. In addition to Katz, who is chair of the Department of Materials Science and Engineering in the university's Whiting School of Engineering, the co-authors were Bal Mukund Dhar, a current doctoral student in the lab, and Kevin C. See, who recently completed his doctoral studies under Katz.

Funding for the research was provided by the U.S. Department of Energy, the U.S. Air Force Office of Scientific Research and the National Science Foundation.


Related links:

Nature Materials Online Article: www.nature.com/nmat/journal/vaop/ncurrent/full/nmat2560.html

A Nature Materials commentary about the Katz team's research: www.nature.com/nmat/journal/v8/n11/full/nmat2552.html

Howard E. Katz's Web page: materials.jhu.edu/index.php/people/faculty/katz

Johns Hopkins Department of Materials Science and Engineering: materials.jhu.edu/

Johns Hopkins Technology Transfer: www.techtransfer.jhu.edu/


####

About Johns Hopkins University
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.

For more information, please click here

Contacts:
Phil Sneiderman
443-287-9960

Copyright © Johns Hopkins University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Thin films

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

Stress-free ALD from Picosun August 28th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Possible Futures

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Nanoelectronics

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Announcements

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project