Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > University of Cincinnati researchers create all-electric spintronics

(Left) Scanning electron micrograph of the quantum point contact schematically illustrates unpolarized (spin up and spin down) electrons incident on the left coming out of the device spin-polarized with spin up. (Right) Spatial distribution of spin polarization in the quantum point contact constriction.

Credit: Illustration by Professor Philippe Debray, University of Cincinnati
(Left) Scanning electron micrograph of the quantum point contact schematically illustrates unpolarized (spin up and spin down) electrons incident on the left coming out of the device spin-polarized with spin up. (Right) Spatial distribution of spin polarization in the quantum point contact constriction. Credit: Illustration by Professor Philippe Debray, University of Cincinnati

Abstract:
Multidisciplinary team of UC researchers first to find an innovative and novel way to control an electron's spin orientation using purely electrical means

University of Cincinnati researchers create all-electric spintronics

Cincinnati, OH | Posted on October 28th, 2009

A multidisciplinary team of UC researchers is the first to find an innovative and novel way to control an electron's spin orientation using purely electrical means.

Their findings were recently published in the prestigious, high-profile journal "Nature Nanotechnology," in an article titled "All-Electric Quantum Point Contact Spin-Polarizer."

For decades, the transistors inside radios, televisions and other everyday electronic items have transmitted data by controlling the movement of the charge of an electron. Scientists have since discovered that transistors that function by controlling an electron's spin instead of its charge would use less energy, generate less heat and operate at higher speeds. This has resulted in a new field of research — spin electronics or spintronics — that offers one of the most promising paradigms for the development of novel devices for use in the post-CMOS (complementary metal-oxide-semiconductor) era.

Until now, scientists have attempted to develop spin transistors by incorporating local ferromagnets into device architectures. This results in significant design complexities, especially in view of the rising demand for smaller and smaller transistors," says Philippe Debray, research professor in the Department of Physics in the McMicken College of Arts & Sciences. "A far better and practical way to manipulate the orientation of an electron's spin would be by using purely electrical means, like the switching on and off of an electrical voltage. This will be spintronics without ferromagnetism or all-electric spintronics, the holy grail of semiconductor spintronics."

The team of researchers led by Debray and Professor Marc Cahay (Department of Electrical and Computer Engineering) is the first to find an innovative and novel way to control an electron's spin orientation using purely electrical means.

"We used a quantum point contact — a short quantum wire — made from the semiconductor indium arsenide to generate strongly spin-polarized current by tuning the potential confinement of the wire by bias voltages of the gates that create it," Debray says.

Debray continues, "The key condition for the success of the experiment is that the potential confinement of the wire must be asymmetric — the transverse opposite edges of the quantum point contact must be asymmetrical. This was achieved by tuning the gate voltages. This asymmetry allows the electrons — thanks to relativistic effects — to interact with their surroundings via spin-orbit coupling and be polarized. The coupling triggers the spin polarization and the Coulomb electron-electron interaction enhances it."

Controlling spin electronically has major implications for the future development of spin devices. The work by Debray's team is the first step. The next experimental step would be to achieve the same results at a higher temperature using a different material such as gallium arsenide.

This work was supported by National Science Foundation awards ECCS 0725404 and DMR 0710581.

####

About University of Cincinnati
The University of Cincinnati offers students a balance of educational excellence and real-world experience.

Since its founding in 1819, UC has been the source of many discoveries creating positive change for society, including:

the first antihistamine,
co-op education,
the first electronic organ,
the Golden Gate Bridge designer and
the oral polio vaccine.

Each year, this public, research university graduates 5,000 students, adding to more than 200,000 living alumni around the world.

UC is the largest employer in the Cincinnati region, with an economic impact of more than $3 billion.

For more information, please click here

Contacts:
Wendy Beckman

513-556-1826

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Vacuum Ultraviolet Lamp of the Future Created in Japan: First Solid-State Vacuum UV Phosphor, Described in APL-Materials, Promises Smaller, Safer, Longer Lasting, Low Power Lamps for Industrial Applications April 22nd, 2014

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Spintronics

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Relativity shakes a magnet: Researchers from Mainz University demonstrate a new principle for magnetic recording / Publication in Nature Nanotechnology March 4th, 2014

Ion beams pave way to new kinds of valves for use in spintronics February 18th, 2014

Nanoelectronics

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Announcements

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Quantum nanoscience

A new key to unlocking the mysteries of physics? Quantum turbulence April 21st, 2014

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Quantum Photon Properties Revealed in Another Particle—the Plasmon April 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE