Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > University of Cincinnati researchers create all-electric spintronics

(Left) Scanning electron micrograph of the quantum point contact schematically illustrates unpolarized (spin up and spin down) electrons incident on the left coming out of the device spin-polarized with spin up. (Right) Spatial distribution of spin polarization in the quantum point contact constriction.

Credit: Illustration by Professor Philippe Debray, University of Cincinnati
(Left) Scanning electron micrograph of the quantum point contact schematically illustrates unpolarized (spin up and spin down) electrons incident on the left coming out of the device spin-polarized with spin up. (Right) Spatial distribution of spin polarization in the quantum point contact constriction. Credit: Illustration by Professor Philippe Debray, University of Cincinnati

Abstract:
Multidisciplinary team of UC researchers first to find an innovative and novel way to control an electron's spin orientation using purely electrical means

University of Cincinnati researchers create all-electric spintronics

Cincinnati, OH | Posted on October 28th, 2009

A multidisciplinary team of UC researchers is the first to find an innovative and novel way to control an electron's spin orientation using purely electrical means.

Their findings were recently published in the prestigious, high-profile journal "Nature Nanotechnology," in an article titled "All-Electric Quantum Point Contact Spin-Polarizer."

For decades, the transistors inside radios, televisions and other everyday electronic items have transmitted data by controlling the movement of the charge of an electron. Scientists have since discovered that transistors that function by controlling an electron's spin instead of its charge would use less energy, generate less heat and operate at higher speeds. This has resulted in a new field of research — spin electronics or spintronics — that offers one of the most promising paradigms for the development of novel devices for use in the post-CMOS (complementary metal-oxide-semiconductor) era.

Until now, scientists have attempted to develop spin transistors by incorporating local ferromagnets into device architectures. This results in significant design complexities, especially in view of the rising demand for smaller and smaller transistors," says Philippe Debray, research professor in the Department of Physics in the McMicken College of Arts & Sciences. "A far better and practical way to manipulate the orientation of an electron's spin would be by using purely electrical means, like the switching on and off of an electrical voltage. This will be spintronics without ferromagnetism or all-electric spintronics, the holy grail of semiconductor spintronics."

The team of researchers led by Debray and Professor Marc Cahay (Department of Electrical and Computer Engineering) is the first to find an innovative and novel way to control an electron's spin orientation using purely electrical means.

"We used a quantum point contact — a short quantum wire — made from the semiconductor indium arsenide to generate strongly spin-polarized current by tuning the potential confinement of the wire by bias voltages of the gates that create it," Debray says.

Debray continues, "The key condition for the success of the experiment is that the potential confinement of the wire must be asymmetric — the transverse opposite edges of the quantum point contact must be asymmetrical. This was achieved by tuning the gate voltages. This asymmetry allows the electrons — thanks to relativistic effects — to interact with their surroundings via spin-orbit coupling and be polarized. The coupling triggers the spin polarization and the Coulomb electron-electron interaction enhances it."

Controlling spin electronically has major implications for the future development of spin devices. The work by Debray's team is the first step. The next experimental step would be to achieve the same results at a higher temperature using a different material such as gallium arsenide.

This work was supported by National Science Foundation awards ECCS 0725404 and DMR 0710581.

####

About University of Cincinnati
The University of Cincinnati offers students a balance of educational excellence and real-world experience.

Since its founding in 1819, UC has been the source of many discoveries creating positive change for society, including:

the first antihistamine,
co-op education,
the first electronic organ,
the Golden Gate Bridge designer and
the oral polio vaccine.

Each year, this public, research university graduates 5,000 students, adding to more than 200,000 living alumni around the world.

UC is the largest employer in the Cincinnati region, with an economic impact of more than $3 billion.

For more information, please click here

Contacts:
Wendy Beckman

513-556-1826

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Spintronics

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Spintronics just got faster July 20th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Quantum nanoscience

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

World first: Significant development in the understanding of macroscopic quantum behavior: Researchers from Polytechnique Montréal and Imperial College London demonstrate the wavelike quantum behavior of a polariton condensate on a macroscopic scale and at room temperature July 14th, 2015

The quantum physics of artificial light harvesting: How molecular vibrations make photosynthesis efficient July 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project