Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne dedicates new microscopy facility at Center for Nanoscale Materials: Research may lead to energy-efficient engines, advanced medical therapy

Abstract:
The Center for Nanoscale Materials (CNM) at the U.S. Department of Energy's (DOE) Argonne National Laboratory dedicated its new scanning probing microscopy building recently during its annual users conference. The new building will house a new scanning probe microscope that measures spin-polarized electrons on surfaces.

Argonne dedicates new microscopy facility at Center for Nanoscale Materials: Research may lead to energy-efficient engines, advanced medical therapy

Argonne, IL | Posted on October 24th, 2009

"The spin-polarized scanning probing microscope (LT-SPM) is a wonderful addition to the many tools available to researchers at the CNM," said interim CNM director Derrick Mancini. "Nanomagnetism is a burgeoning field, and the LT-SPM will provide the most cutting-edge technology for this research."

Nanomagnetism research using the LT-SPM may lead to more energy-efficient motors, advanced information storage, processing prototype devices, advanced medical therapy and biomagnetic sensing concepts. The LT-SPM is a multi-functional scanning probe microscope devoted to the high-resolution properties of spin-polarized surfaces at high magnetic fields (9 T) and low temperatures (4.2 K). This state-of-the-art instrument expands the CNM programs in nanomagnetism and nanoferroelectrics.

With the spin-polarized capabilities and the ability to characterize insulating samples, this instrument will propel the CNM to the forefront of science using scanning probes to pursue fundamental materials research. A new building was constructed adjacent to the CNM to house the LT-SPM, which requires a highly stable operating environment that is free of acoustic and vibratory interference. The microscope also produces relatively large stray magnetic fields that are incompatible with instruments in the CNM, which was designed specifically to be free of magnetic fields.

The LT-SPM is a necessary tool for important scientific research, so a new building was designed to specifically hold the machine and place it far enough away from the CNM that the magnetic fields will not pose a problem to other instruments in the building.

Construction on the building was finished at the end of September and the facility will be ready for occupancy by the end of fall.

The building cost $1.5 million and was paid for by Institutional General Plant Project funds from the laboratory.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Brock Cooper
630/252-5565

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Laboratories

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Openings/New facilities/Groundbreaking/Expansion

Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Tools

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

New Objective Focusing Nanopositioner from nPoint July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE