Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NC State Develops Material That Could Boost Data Storage, Save Energy

Jagdish (Jay) Narayan - North Carolina State University; Distinguished University Professor and Director of NSF Center for Advanced Materials and Smart Structures
Department of Materials Science and Engineering.
Jagdish (Jay) Narayan - North Carolina State University; Distinguished University Professor and Director of NSF Center for Advanced Materials and Smart Structures Department of Materials Science and Engineering.

Abstract:
North Carolina State University engineers have created a new material that would allow a fingernail-size computer chip to store the equivalent of 20 high-definition DVDs or 250 million pages of text, far exceeding the storage capacities of today's computer memory systems.

NC State Develops Material That Could Boost Data Storage, Save Energy

Raleigh, NC | Posted on October 21st, 2009

Led by Dr. Jagdish "Jay" Narayan, John C.C. Fan Family Distinguished Professor of Materials Science and Engineering and director of the National Science Foundation Center for Advanced Materials and Smart Structures at NC State, the engineers made their breakthrough using the process of selective doping, in which an impurity is added to a material that changes its properties. The process also shows promise for boosting vehicles' fuel economy and reducing heat produced by semiconductors, a potentially important development for more efficient energy production.

Working at the nanometer level — a pinhead has a diameter of 1 million nanometers — the engineers added metal nickel to magnesium oxide, a ceramic. The resulting material contained clusters of nickel atoms no bigger than 10 square nanometers, a 90 percent size reduction compared to today's techniques and an advancement that could boost computer storage capacity.

"Instead of making a chip that stores 20 gigabytes, you have one that can handle one terabyte, or 50 times more data," Narayan says.

Information storage is not the only area where advances could be made. By introducing metallic properties into ceramics, Narayan says engineers could develop a new generation of ceramic engines able to withstand twice the temperatures of normal engines and achieve fuel economy of 80 miles per gallon. And since the thermal conductivity of the material would be improved, the technique could also have applications in harnessing alternative energy sources like solar energy.

The engineers' discovery also advances knowledge in the emerging field of "spintronics," which is dedicated to harnessing energy produced by the spinning of electrons. Most energy used today is harnessed through the movement of current and is limited by the amount of heat that it produces, but the energy created by the spinning of electrons produces no heat. The NC State engineers were able to manipulate the nanomaterial so the electrons' spin within the material could be controlled, which could prove valuable to harnessing the electrons' energy. The finding could be important for engineers working to produce more efficient semiconductors.

Working with Narayan on the study were Dr. Sudhakar Nori, a research associate at NC State, Shankar Ramachandran, a former NC State graduate student, and J.T. Prater, an adjunct professor of materials science and engineering. Their findings are published as "The Synthesis and Magnetic Properties of a Nanostructured Ni-MgO System," which appeared in the June edition of JOM, the journal of the Minerals, Metals and Materials Society. The research was sponsored by the National Science Foundation.

Related research by Narayan was published in April in the International Journal of Nanotechnology.

Note to editors: An abstract of the paper follows.

"The Synthesis and Magnetic Properties of a Nanostructured Ni-MGO System"

Authors: J. Narayan, Sudhakar Nori, S. Ramachandran, and J.T. Prater, NC State University

Published: June 2009 in JOM

Abstract: We have investigated the magnetic properties of the Ni-MgO system with an Ni concentration of 0.5 at.%. In as-grown crystals, Ni ions occupy substitutional Mg sites. Under these conditions the Ni-MgO system behaves as a perfect paramagnet. By using a controlled annealing treatment in a reducing atmosphere, we were able to induce clustering and form pure Ni precipitates in the nanometer size range. The size distribution of precipitates or nanodots is varied by changing annealing time and temperature. Magnetic properties of specimens ranging from perfect paramagnetic to ferromagnetic characteristics have been studied systematically to establish structure-property correlations. The spontaneous magnetization data for the samples, where Ni was precipitated randomly in MgO host, fits well to Bloch's T3/2-law and has been explained within the framework of spin wave theory predictions.

####

About North Carolina State University
With more than 31,000 students and nearly 8,000 faculty and staff, North Carolina State University is a comprehensive university known for its leadership in education and research, and globally recognized for its science, technology, engineering and mathematics leadership.

NC State students, faculty and staff are focused. As one of the leading land-grant institutions in the nation, NC State is committed to playing an active and vital role in improving the quality of life for the citizens of North Carolina, the nation and the world.

For more information, please click here

Contacts:
Nate Degraff
Engineering Communications
919.515.3848

Dr. Jay Narayan
919.515.7874

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Spintronics

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

On the road to spin-orbitronics: Berkeley Lab researchers find new way to manipulate magnetic domain walls April 13th, 2015

Graphene looking promising for future spintronic devices April 10th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Memory Technology

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Environment

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Automotive/Transportation

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project