Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Small ... smaller ... smallest? ASU researchers create molecular diode

This is a schematic for molecular diode. The symmetric molecule (top) allows for two-way current. The asymmetrical molecule (bottom) permits current in one direction only and acts as a single-molecule diode.

Credit: Biodesign Institute at Arizona State University
This is a schematic for molecular diode. The symmetric molecule (top) allows for two-way current. The asymmetrical molecule (bottom) permits current in one direction only and acts as a single-molecule diode.

Credit: Biodesign Institute at Arizona State University

Abstract:
Recently, at Arizona State University's Biodesign Institute, N.J. Tao and collaborators have found a way to make a key electrical component on a phenomenally tiny scale. Their single-molecule diode is described in this week's online edition of Nature Chemistry.

Small ... smaller ... smallest? ASU researchers create molecular diode

Tempe, AZ | Posted on October 13th, 2009

In the electronics world, diodes are a versatile and ubiquitous component. Appearing in many shapes and sizes, they are used in an endless array of devices and are essential ingredients for the semiconductor industry. Making components including diodes smaller, cheaper, faster and more efficient has been the holy grail of an exploding electronics field, now probing the nanoscale realm.

Smaller size means cheaper cost and better performance for electronic devices. The first generation computer CPU used a few thousand transistors, Tao says noting the steep advance of silicon technology. "Now even simple, cheap computers use millions of transistors on a single chip."

But lately, the task of miniaturization has gotten much harder, and the famous dictum known as Moore's law—which states that the number of silicon-based transistors on a chip doubles every 18-24 months—will eventually reach its physical limits. "Transistor size is reaching a few tens of nanometers, only about 20 times larger than a molecule," Tao says. "That's one of the reasons people are excited about this idea of molecular electronics."

Diodes are critical components for a broad array of applications, from power conversion equipment, to radios, logic gates, photodetectors and light-emitting devices. In each case, diodes are components that allow current to flow in one direction around an electrical circuit but not the other. For a molecule to perform this feat, Tao explains, it must be physically asymmetric, with one end capable of forming a covalent bond with the negatively charged anode and the other with the positive cathode terminal.

The new study compares a symmetric molecule with an asymmetric one, detailing the performance of each in terms of electron transport. "If you have a symmetric molecule, the current goes both ways, much like an ordinary resistor," Tao observes. This is potentially useful, but the diode is a more important (and difficult) component to replicate (Fig 1).

The idea of surpassing silicon limits with a molecule-based electronic component has been around awhile. "Theoretical chemists Mark Ratner and Ari Aviram proposed the use of molecules for electronics like diodes back in 1974," Tao says, adding "people around world have been trying to accomplish this for over 30 years."

Most efforts to date have involved many molecules, Tao notes, referring to molecular thin films. Only very recently have serious attempts been made to surmount the obstacles to single-molecule designs. One of the challenges is to bridge a single molecule to at least two electrodes supplying current to it. Another challenge involves the proper orientation of the molecule in the device. "We are now able to do this—to build a single molecule device with a well defined orientation," Tao says.

The technique developed by Tao's group relies on a property known as AC modulation. "Basically, we apply a little periodically varying mechanical perturbation to the molecule. If there's a molecule bridged across two electrodes, it responds in one way. If there's no molecule, we can tell."

The interdisciplinary project involved Professor Luping Yu, at the University of Chicago, who supplied the molecules for study, as well as theoretical collaborator, Professor Ivan Oleynik from the University of South Florida. The team used conjugated molecules, in which atoms are stuck together with alternating single and multiple bonds. Such molecules display large electrical conductivity and have asymmetrical ends capable of spontaneously forming covalent bonds with metal electrodes to create a closed circuit.

The project's results raise the prospect of building single molecule diodes - the smallest devices one can ever build. "I think it's exciting because we are able to look at a single molecule and play with it, " Tao says. "We can apply a voltage, a mechanical force, or optical field, measure current and see the response. As quantum physics controls the behaviors of single molecules, this capability allows us to study properties distinct from those of conventional devices."

Chemists, physicists, materials researchers, computational experts and engineers all play a central role in the emerging field of nanoelectronics, where a zoo of available molecules with different functions provide the raw material for innovation. Tao is also examining the mechanical properties of molecules, for example, their ability to oscillate. Binding properties between molecules make them attractive candidates for a new generation of chemical sensors. "Personally, I am interested in molecular electronics not because of their potential to duplicate today's silicon applications, " Tao says. Instead, molecular electronics will benefit from unique electronic, mechanical, optical and molecular binding properties that set them apart from conventional semiconductors. This may lead to applications complementing rather than replacing silicon devices.

####

For more information, please click here

Contacts:
Joe Caspermeyer

480-727-0369

Written by Richard Harth
Biodesign Institute Science Writer

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Molecular Machines

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Molecular Nanotechnology

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

Chip Technology

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Nanometrics to Announce Second Quarter Financial Results on August 1, 2017 July 14th, 2017

Sensors

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Discoveries

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Announcements

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project