Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > KLA-Tencor Launches 8900 Inspection System: Flexible defect inspection system for CMOS image sensor applications

KLA-Tencor's new 8900 high speed patterned-wafer defect inspection system represents a single-tool solution for image-sensor color filter and microlens development and production applications. (Photo: Business Wire)
KLA-Tencor's new 8900 high speed patterned-wafer defect inspection system represents a single-tool solution for image-sensor color filter and microlens development and production applications. (Photo: Business Wire)

Abstract:
* The 8900 defect inspection system expands KLA-Tencor's product portfolio in CMOS image sensor process control
* The 8900 represents a single, flexible solution to address the wide range of defect challenges that arise during the manufacturing of an image sensor's color filter array

KLA-Tencor Launches 8900 Inspection System: Flexible defect inspection system for CMOS image sensor applications

Milpitas, CA | Posted on October 12th, 2009

Today KLA-Tencor Corporation (NASDAQ:KLAC), the world's leading supplier of process control and yield management solutions for the semiconductor and related industries, extended its product offerings in the CMOS image sensor (CIS) market by announcing the 8900 defect inspection system. KLA-Tencor's new 8900 offers selectable illumination wavelengths, color-matched to CIS pixels; simultaneous brightfield and darkfield optical channels to enable capture of a wide variety of defect types; and adjustable sensitivity and throughput settings for cost-effective defect management from initial product development through volume production of color filter arrays (CFA).

Image sensors are devices that convert light into electrical signal, for use primarily in cameras. A color filter allows each pixel of the sensor to respond to a specific color—typically red, green or blue (RGB). The CFA is constructed in single-color, patterned layers, with one filter on top of each sensor pixel. Each pixel is capped with a micro-lens. As yield-limiting defects can occur at any step in the assembly process, the 8900's ability to inspect any of the filter or micro-lens layers can help reduce materials waste and cycle time.

An 8900 defect inspection system was recently installed at the first 300mm advanced CFA fab of Toppan Printing Company, Ltd., an industry leader in color filters. "State-of-the-art defect control is important to our ability to provide advanced color filters reliably," said Keiichi Hara, Chief Manager, On-chip Color Filter Department, Kumamoto Plant of Toppan Electronics Products Co., Ltd. "The 8900 has improved our defect control capability and changed our strategy. Because the 8900 is sensitive to a wide range of defect types and has high throughput, it is performing all the defect inspections in the CFA process. This previously required multiple inspection tools. The 8900 can also automate the defect monitoring tasks that used to require manual inspection, making our cycle times shorter and more predictable."

"Image sensor fabs have been using a combination of defect inspection systems, including manual inspection, to cover CFA process development, line monitoring, and incoming and outgoing quality control," remarked Oreste Donzella, Vice President and General Manager of the SWIFT division at KLA-Tencor. "This strategy can lead to errors and inefficiencies. For example, manual inspection results have high variability. Even with automated systems, critical defect excursions can be missed because the results are difficult to compare among different systems. In developing the 8900, we leveraged KLA-Tencor's extensive experience in brightfield and darkfield micro and macro inspection to provide image sensor fabs with a single, flexible system to address the breadth of their CFA inspection requirements. We believe that the 8900 will allow fabs to improve resource allocation, increase the yield of their current products and accelerate delivery of their latest image sensors."

Key features of the 8900 defect inspection system include:

* Simultaneous brightfield and darkfield optical paths to capture a wide range of defect types in a single pass, such as micro-lens deformation; resist and fall-on defects; color contamination; large stains and striations;
* Selectable LED inspection and review illumination spectrum matched to CIS filter colors;
* Sensitivity consistent with requirements of advanced CIS roadmaps;
* Throughput above 110 wafers per hour at production sensitivity, for 300mm semiconductor wafers;
* Automated binning of defects by type;
* Automated sensor pass/fail dispositioning; and
* Automated color review for defect verification.

For more technical details about the 8900, please visit the product webpage: www.kla-tencor.com/patterned-wafer/8900.html.

####

About KLA-Tencor Corporation
KLA-Tencor Corporation (NASDAQ:KLAC), a leading provider of process control and yield management solutions, partners with customers around the world to develop state-of-the-art inspection and metrology technologies. These technologies serve the semiconductor, data storage, compound semiconductor, photovoltaic, and other related nanoelectronics industries. With a portfolio of industry-standard products and a team of world-class engineers and scientists, the company has created superior solutions for its customers for over 30 years. Headquartered in Milpitas, California, KLA-Tencor has dedicated customer operations and service centers around the world.

Forward Looking Statements:

Statements in this press release other than historical facts, such as statements regarding the 8900’s expected performance (including its defect capture and the benefits that may be realized by our customers through the use of the 8900), are forward-looking statements, and are subject to the Safe Harbor provisions created by the Private Securities Litigation Reform Act of 1995. These forward-looking statements are based on current information and expectations, and involve a number of risks and uncertainties. Actual results may differ materially from those projected in such statements due to various factors, including delays in the adoption of new technologies (whether due to cost or performance issues or otherwise) or unanticipated technological challenges or limitations that affect the implementation or use of our products.

For more information, please click here

Contacts:
KLA-Tencor Corporation
Investor Relations:
Ed Lockwood
408-875-9529
Sr. Director, Investor Relations


Media Relations:
Meggan Powers
408-875-8733
Sr. Director, Corporate Communications

Copyright © Business Wire 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Imaging

Combined effort for structural determination April 15th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

Deben reports on the research of Dr Sunita Ho from UCSF using a CCT500 tensile stage to study the behaviour of dental materials April 14th, 2015

The Casiraghi Group, located at the University of Manchester's NanoScience and Spectroscopy Laboratory, use Raman in the study of graphene April 14th, 2015

Sensors

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

New Biosensor Increases Possibility to Predict Potential of Heart Diseases April 12th, 2015

Announcements

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Tools

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Combined effort for structural determination April 15th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE