Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-Destructing Messages

'Disappearing' Nanoparticle Ink: A new writing medium can be tweaked to erase itself after a pre-determined length of time. Rafal Klajn
'Disappearing' Nanoparticle Ink: A new writing medium can be tweaked to erase itself after a pre-determined length of time. Rafal Klajn

Abstract:
Light-reactive coatings make metal nanoparticles into inks for self-erasing paper

Self-Destructing Messages

Evanston, IL | Posted on August 28th, 2009

Those who like to watch spy movies like "Mission Impossible" are familiar with the self-destructing messages that inform the secret agents of the details of their mission and then dissolve in a puff of smoke. In the real world, there is serious interest in materials that don't exactly destroy themselves, but that store texts or images for a predetermined amount of time. "Such re-writable ‘paper' would protect sensitive information," Bartosz A. Grzybowski of Northwestern University in Evanston (IL, USA) explains. "Imagine a meeting in the Pentagon where the classified materials self-erase when the meeting is over. No way to take them away and sell to terrorists." He and his team have developed a new concept that can be used to produce self-erasing pictures. In contrast to previous techniques, their method allows for multicolored pictures. As the researchers report in the journal Angewandte Chemie, their concept is based on an ‘ink' made of nanoscopic metal particles that clump together—in a reversible process—under the influence of light.

To make this new re-writable material, the researchers embed silver and/or gold nanoparticles in a thin film of an organic gel, which they then laminate. The films are bright red if they contain gold particles, and yellow if they contain silver. When these films are irradiated with UV light, the color of the film changes in the irradiated regions. The degree of difference depends on the duration of the irradiation. Gold-containing films change stepwise from red to pale blue; those containing sliver change from yellow to violet. Multicolored pictures can be produced if different areas are irradiated for different amounts of time. The resulting pictures are not permanent; they fade until they are completely erased.

How does it work? The trick lies in a special organic coating on the metal nanoparticles. Under UV light, certain groups of atoms in these molecules rearrange. This makes them more polar, which causes them to attract each other more strongly. The nanoparticles then prefer to clump together in large spherical aggregates. The color changes because the color of nanoscopic particles is dependent on the size of the aggregates they form. The size of the aggregates, in turn, depends on the duration of the UV irradiation. In this way, the color of the ink can be controlled.

The particle aggregates eventually break up into individual metal nanoparticles because the groups of atoms return to their original arrangements, and the color fades. The time it takes for the picture to be erased can be controlled by means of the exact composition of the coating. The erasure can be accelerated by irradiation with visible light or by heating.

Author: Bartosz A. Grzybowski, Northwestern University, Evanston (USA), dysa.northwestern.edu/

Title: Writing Self-Erasing Images using Metastable Nanoparticle "Inks"

Angewandte Chemie International Edition 2009, 48, No. 38, 7035-7039, doi: 10.1002/anie.200901119


####

About Angewandte Chemie International Edition
Wiley InterScience (www.interscience.wiley.com) provides access to over 3 million articles across nearly 1500 journals and 7000 Online Books and major reference works. It also holds industry leading databases such as The Cochrane Library, chemistry databases and the acclaimed Current Protocols laboratory manuals.

For more information, please click here

Contacts:
Journal Customer Services
John Wiley & Sons Inc
350 Main Street
Malden MA 02148
USA

Copyright © Angewandte Chemie International Edition

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Possible Futures

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Announcements

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Homeland Security

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Military

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project