Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Hankering for Molecular Electronics? Grab the New NIST Sandwich

The flip-chip lamination method creates an ultra-smooth gold surface (left), which allows the organic molecules to form a thin yet even layer between the gold and silicon. Gold surfaces created by other methods are substantially rougher (right), and would result in many of the molecular switches either being smashed or not contacting the silicon.

Credit: Coll Bau, NIST
The flip-chip lamination method creates an ultra-smooth gold surface (left), which allows the organic molecules to form a thin yet even layer between the gold and silicon. Gold surfaces created by other methods are substantially rougher (right), and would result in many of the molecular switches either being smashed or not contacting the silicon. Credit: Coll Bau, NIST

Abstract:
The sandwich recipe recently concocted by scientists working at the National Institute of Standards and Technology (NIST) may prove tasty for computer chip designers, who have long had an appetite for molecule-sized electronic components - but no clear way to satisfy it until now.

Hankering for Molecular Electronics? Grab the New NIST Sandwich

Gaithersburg, MD | Posted on August 27th, 2009

The research team, which includes collaborators from the University of Maryland, has found a simple method of sandwiching organic molecules between silicon and metal, two materials fundamental to electronic components. By doing so, the team may have overcome one of the principal obstacles in creating switches made from individual molecules, which represent perhaps the ultimate in miniaturization for the electronics industry.

The idea of using molecules as switches has been around for years, carrying the promise of components that can be produced cheaply in huge numbers, perform faster as a group than their larger silicon brethren, and use only a tiny fraction of their energy. But although there has been progress in creating the switching molecules themselves, the overall concept has been stuck on drawing boards in large part because organic molecules are delicate and tend to be damaged irreparably when subjected to one particularly stressful step in the chip-building process: attaching them to electrical contacts.

Metal forms many of these contacts in chip circuits, but getting metal onto a chip involves heating it until it evaporates, then allowing it to condense on the silicon. "Imagine what hot steam would do to your arm," says Mariona Coll Bau, a materials scientist at NIST. "Evaporated metal is much hotter, and organic switching molecules are very fragile—they can't stand the heat."

Coll Bau's team, however, found a way to cool the kitchen. They cover a surface with a non-stick material before condensing gold on top of it, allowing the metal to cool to an ultra-smooth surface. They then laminate the gold surface with the plastic used in overhead transparencies. The non-stick layer allows them to remove the laminated gold from the surface as easily as peeling off plastic wrap. Adding the organic molecules then is comparatively simple: attach the molecules to the gold and then flip the whole assembly onto a silicon base, with the organic molecules sandwiched neatly inside—and intact.

Though scientists have attempted to make sandwiches of this sort before, Coll Bau says their first-ever use of an imprinting machine finally made it possible to assemble the ingredients effectively. "The machine allows us to press the three layers together so the organic molecules contact both the silicon and gold, but without smashing or otherwise degrading them," she says.

Coll Bau adds that "flip-chip lamination," as the team calls it, could lead to applications beyond chip design, including biosensors, which depend on the organic and electronic worlds interacting. "The technique may prove useful as a fabrication paradigm," she says. "It's hard to make small things, and this might be an easier way to make them."

* M. Coll, L.H. Miller, L.J. Richter, D.R. Hines, O.D. Jurchescu, N. Gergel-Hackett, C. Richter and C.A. Hacker. Formation of silicon-based molecular electronic structures using flip-chip lamination. Journal of the American Chemical Society, Aug. 11, 2009 (online publication), DOI 10.1021/ja901646j.

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact
Chad Boutin

(301) 975-4261

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Discoveries

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Announcements

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project