Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > IBM Scientists Use DNA Scaffolding To Build Tiny Circuit Boards: Nanotechnology advancement could lead to smaller, faster, more energy efficient computer chips

Triangular "DNA origami" were made to assemble on etched carbon and silicon
Triangular "DNA origami" were made to assemble on etched carbon and silicon

Abstract:
Today, scientists at IBM (NYSE: IBM) Research and the California Institute of Technology announced a scientific advancement that could be a major breakthrough in enabling the semiconductor industry to pack more power and speed into tiny computer chips, while making them more energy efficient and less expensive to manufacture.

IBM Scientists Use DNA Scaffolding To Build Tiny Circuit Boards: Nanotechnology advancement could lead to smaller, faster, more energy efficient computer chips

San Jose, CA | Posted on August 17th, 2009

IBM researchers and collaborator Paul W.K. Rothemund, of the California Institute of Technology, have made an advancement in combining lithographic patterning with self assembly - a method to arrange DNA origami structures on surfaces compatible with today's semiconductor manufacturing equipment.

Today, the semiconductor industry is faced with the challenges of developing lithographic technology for feature sizes smaller than 22 nm and exploring new classes of transistors that employ carbon nanotubes or silicon nanowires. IBM's approach of using DNA molecules as scaffolding -- where millions of carbon nanotubes could be deposited and self-assembled into precise patterns by sticking to the DNA molecules - may provide a way to reach sub-22 nm lithography.

The utility of this approach lies in the fact that the positioned DNA nanostructures can serve as scaffolds, or miniature circuit boards, for the precise assembly of components - such as carbon nanotubes, nanowires and nanoparticles - at dimensions significantly smaller than possible with conventional semiconductor fabrication techniques. This opens up the possibility of creating functional devices that can be integrated into larger structures, as well as enabling studies of arrays of nanostructures with known coordinates.

"The cost involved in shrinking features to improve performance is a limiting factor in keeping pace with Moore's Law and a concern across the semiconductor industry," said Spike Narayan, manager, Science & Technology, IBM Research - Almaden. "The combination of this directed self-assembly with today's fabrication technology eventually could lead to substantial savings in the most expensive and challenging part of the chip-making process."

The techniques for preparing DNA origami, developed at Caltech, cause single DNA molecules to self assemble in solution via a reaction between a long single strand of viral DNA and a mixture of different short synthetic oligonucleotide strands. These short segments act as staples - effectively folding the viral DNA into the desired 2D shape through complementary base pair binding. The short staples can be modified to provide attachment sites for nanoscale components at resolutions (separation between sites) as small as 6 nanometers (nm). In this way, DNA nanostructures such as squares, triangles and stars can be prepared with dimensions of 100 - 150 nm on an edge and a thickness of the width of the DNA double helix.

The lithographic templates were fabricated at IBM using traditional semiconductor techniques, the same used to make the chips found in today's computers, to etch out patterns. Either electron beam or optical lithography were used to create arrays of binding sites of the proper size and shape to match those of individual origami structures. Key to the process were the discovery of the template material and deposition conditions to afford high selectivity so that origami binds only to the patterns of "sticky patches" and nowhere else.

The paper on this work, "Placement and orientation of DNA nanostructures on lithographically patterned surfaces," by scientists at IBM Research and the California Institute of Technology, will be published in the September issue of Nature Nanotechnology and is currently available at: http://www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.220.html.

####

For more information, please click here

Contacts:
Research & Development
Emerging technologies
Jenny Galitz McTighe
Media Relations director
914-945-1016
Mobile phone: 917-499-8123

Copyright © IBM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Creating new materials with quantum effects for electronics January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchersí crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE