Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A*STAR scientists invent the world's only controllable molecule gear of minuscule size of 1.2nm

Abstract:
Invention marks a radical shift in the scientific progress of molecular machines

A*STAR scientists invent the world's only controllable molecule gear of minuscule size of 1.2nm

Singapore | Posted on June 15th, 2009

Scientists from A*STAR's Institute of Materials Research and Engineering (IMRE), led by Professor Christian Joachim1, have scored a breakthrough in nanotechnology by becoming the first in the world to invent a molecular gear of the size of 1.2nm whose rotation can be deliberately controlled. This achievement marks a radical shift in the scientific progress of molecular machines and is published on 15 June 20092 in Nature Materials3, one of the most prestigious journals in materials science.

Said Prof Joachim, "Making a gear the size of a few atoms is one thing, but being able to deliberately control its motions and actions is something else altogether. What we've done at IMRE is to create a truly complete working gear that will be the fundamental piece in creating more complex molecular machines that are no bigger than a grain of sand."

Prof Joachim and his team discovered that the way to successfully control the rotation of a single-molecule gear is via the optimization of molecular design, molecular manipulation and surface atomic chemistry. This was a breakthrough because before the team's discovery, motions of molecular rotors and gears were random and typically consisted of a mix of rotation and lateral displacement. The scientists at IMRE solved this scientific conundrum by proving that the rotation of the molecule-gear could be wellcontrolled by manipulating the electrical connection between the molecule and the tip of a Scanning Tunnelling Microscope while it was pinned on an atom axis.

Said Dr Lim Khiang Wee, Executive Director of IMRE, "Christian and his team's discovery shows that it may one day be possible to create and manipulate molecular-level machines. Such machines may, for example, walk on DNA tracks in the future to deliver therapeutics to heal and cure. There already exists at least one international roadmap for creating such productive nanosystems. As we push the frontiers of nanotechnology, we increase our understanding of new phenomena at the nanoscale. This paper is a valuable step on the long road to applying this understanding for discoveries and breakthroughs in nanotechnology and bring to reality the tiny nanobots and nanomachines from science fiction movies."


1) Prof Christian Joachim is a Visiting Investigator at IMRE since 2005. He is the Director of Research, and Head of Molecular Nanoscience and Picotechnology Group, at the Centre National de la Recherché Scientifique (CNRS).
2) Singapore time. Paper will be published online on 14 June 2009 in USA.
3) Nature Materials, DOI: 10.1038/NMAT2467 AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH

####

About A*STAR
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based Singapore. A*STAR actively nurtures public sector research and development in Biomedical Sciences, and Physical Sciences and Engineering, and supports Singapore's key economic clusters by providing intellectual, human and industrial capital to our partners in industry and the healthcare sector. A*STAR oversees 23 research institutes, consortia and centres located in Biopolis and Fusionopolis, and the area in their vicinity, and supports extramural research with the universities, hospital research centres, and other local and international partners.

About the Institute of Materials Research and Engineering (IMRE)

Established in September 1997, IMRE has built strong capabilities in materials analysis, characterization, materials growth, patterning, fabrication, synthesis and integration. IMRE is an institute of talented researchers equipped with state-of-the-art facilities such as the SERC Nanofabrication and Characterization Facility to conduct world-class materials science research. Leveraging on these capabilities, R&D programs have been established in collaboration with industry partners. These include research on organic solar cells, nanocomposites, flexible organic light-emitting diodes (OLEDs), solid-state lighting, nanoimprinting, microfluidics and next generation atomic scale interconnect technology. (Website: www.imre.a-star.edu.sg)

For more information, please click here

Contacts:
For media enquiries, please contact:
Ms Tan Le-Shon
Assistant Head, Corporate Communications
Agency for Science, Technology and Research (A*STAR)
1 Fusionopolis Way, #20-10, Connexis North
Singapore 138632
DID +65 68266 144


Mr Eugene Low
Manager, Corporate Communications
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9769 1026


For technical enquiries, please contact:
Pro. Christian Joachim
Visiting Research Scientist
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8344


Dr We-Hyo Soe
Senior Research Engineer
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 7160
wh-soe_imre.a-star.edu.sg

Dr Carlos de Jesus Manzano Garcia
Research Engineer
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8604

Copyright © A*STAR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Chemistry

Thinnest feasible membrane produced April 17th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Good vibrations: Using light-heated water to deliver drugs - Researchers use near-infrared light to warm water-infused polymeric particles April 1st, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Molecular Machines

Structural Insights into the Inner Workings of a Viral Nanomachine April 3rd, 2014

Big data tackles tiny molecular machines:Rice University technique able to analyze conformations of complex molecular machines March 14th, 2014

Advantages emerge in using nanostructured material in the forging process of mechanical components February 28th, 2014

Nanomotors are controlled, for the first time, inside living cells February 10th, 2014

Nanomedicine

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Discoveries

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Announcements

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Nanobiotechnology

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE