Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tubes Grow From Drops

Nanotubes of tin disulfide were fabricated from SnS2 nanoflakes by the vapor-liquid-solid process using bismuth nanodroplets as a catalyst. The SnS2 reagent in the gas phase preferentially adsorbs onto the bismuth particles; upon cooling, nucleation and growth of SnS2 nanotubes occurs (see HRTEM image). Annealing the nanotubes results in the formation of SnS2/SnS superlattices.
Nanotubes of tin disulfide were fabricated from SnS2 nanoflakes by the vapor-liquid-solid process using bismuth nanodroplets as a catalyst. The SnS2 reagent in the gas phase preferentially adsorbs onto the bismuth particles; upon cooling, nucleation and growth of SnS2 nanotubes occurs (see HRTEM image). Annealing the nanotubes results in the formation of SnS2/SnS superlattices.

Abstract:
Bismuth-catalyzed growth of tin sulfide nanotubes

Tubes Grow From Drops

Posted on June 15th, 2009

Since the discovery of carbon nanotubes in the early 1990s, nanotubes and nanowires have been the focus of much scientific attention. Aside from carbon, nanotubes have since been made from various other materials. Possible applications for these nanostructures range across many fields, including microelectronic circuits, sensors, and special light conductors and light-emitting nanotubes for displays. A research team headed by Wolfgang Tremel at the University of Mainz has now developed a new process for the production of tin sulfide nanotubes. As reported in the journal Angewandte Chemie, the researchers let the SnS2 tubes "grow" out of a drop of metal.

Metal sulfides with a lamellar structure that form inorganic nanotubes are not a new concept. They are currently in use in medical technology, for fibers with ultrahigh tensile strength, in hydrogen storage, for rechargeable batteries, in catalysis, and in nanotechnology. One fundamental problem with the fabrication of sulfidic nanotubes is the need for high temperatures to make the planar layers bend and fuse into tubes. In addition, they must be trapped as unstable intermediates. In the case of tin disulfide, this is nearly impossible, however, because the compound decomposes at a significantly lower temperature.

The Mainz researchers thus implemented a different process for the production of tin disulfide nanotubes: they first used a vapor-liquid-solid (VLS) process, a method normally used in the production of semiconducting nanowires. Bismuth metal powder is mixed with tin sulfide nanoflakes and heated in a tube furnace under an argon stream. The reaction product is deposited at the cooler end of the tube.

Nanodroplets of bismuth are formed inside the oven; these act as local points of contact for the tin. In this way, the reaction partners become concentrated within the metal droplet, which then serves as the nucleus for growth of the nanotubes. "In this process, the metal drop is obtained as a sphere at the end of the tube, and the nanotubes grow out of the sphere like a hair out of a follicle," explains Tremel. "Catalysis by the metal droplet makes growth possible at low temperatures."

The new method allowed the scientists to produce nanotubes made of several SnS2 layers with few defects, diameters between 30 and 40 nm, and lengths between 100 and 500 nm.

Author: Wolfgang Tremel, Universität Mainz (Germany), www.ak-tremel.chemie.uni-mainz.de/

Title: Bismuth-Catalyzed Growth of SnS2 Nanotubes and Their Stability

Angewandte Chemie International Edition, doi: 10.1002/anie.200900546

####

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Display technology/LEDs/SS Lighting/OLEDs

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Aledia’s Nanowire LED Technology Endorsed By 2014 Physics Nobel Prize Winner: Hiroshi Amano Serves on Company’s Scientific Advisory Board October 13th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Nanotubes/Buckyballs

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Sensors

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE