Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tracking down the effect of nanoparticles

Cell cultures of lung epithelial cells (in the right-hand box) were exposed to an aerosol of cerium oxide nanoparticles in a special glove box. During the exposure of the cell cultures, the nanoparticles were freshly produced by flame synthesis in the left half of the box.
Cell cultures of lung epithelial cells (in the right-hand box) were exposed to an aerosol of cerium oxide nanoparticles in a special glove box. During the exposure of the cell cultures, the nanoparticles were freshly produced by flame synthesis in the left half of the box.

Abstract:
Cerium oxide is a ceramic nano-abrasive. Scientists have now examined, under conditions close to reality, what happens when it is breathed in and deposited on the lung surface. Initially, the result was rather reassuring.

Tracking down the effect of nanoparticles

Zurich, Switzerland | Posted on April 12th, 2009

Synthetic nanoparticles are ubiquitous nowadays: either as an additive to building materials, whose properties they improve; in cosmetics, mainly in sun creams and toothpaste; or in foodstuffs, to thicken them or brighten their color. However, nano-safety research, i.e. knowledge of how nanoparticles interact with their environment and specifically with a living organism, is still largely in its infancy.

However, this is one of the central topics for the research group led by Wendelin Stark, Assistant Professor at the Institute for Chemical and Bio-engineering of ETH Zurich. The group carries out tests over and over again to investigate the effect nanoparticles have on their surroundings (see the ETH Life article of 15.07.2008)

Conditions close to reality

Together with the research group led by Peter Gehr, Professor of Histology at the University of Bern, the scientists have now used a completely new method and a new type of lung cell culture to examine how cerium oxide nanoparticles act on the cells. The aim was to study the toxicity of cerium oxide, which is used in large amounts as an abrasive, mainly in the manufacture of semiconductor chips. Although, as a rule, this takes place in a hermetically sealed room from which people are excluded, the researchers now simulated a situation in which ceramic nanomaterial is inhaled directly, for example if nanoparticles are manufactured without protection or the powder is handled incorrectly.

The researchers did this by using what is called flame spray synthesis to spray cerium oxide nanoparticles in a closed glove box, thus simulating aerosols. A fan distributed the aerosols uniformly in the box, about 2.5 cubic meters in size, in which the aerosols were sprayed on to the cultured lung cells for ten, twenty and thirty minutes. The ETH researches hit upon the idea when they spoke to Barbara Rothen-Rutishauser, a scientist from Bern and first author of the paper. She told them about the new type of cell culture. The results of the interdisciplinary collaboration were published on-line in "Environmental Science and Technology".

The innovative aspect of the method is the special cell culture combined with the use of flame spray synthesis. The cell culture of lung epithelial cells grows on a permeable membrane. The lower surface of the epithelial cells is immersed in a medium and their upper surface is covered with a natural liquid layer. Thus the cell culture is very similar to the surface of the lung. As a result of the aerosol production, the spray process is also close to reality. The combination of these two techniques showed how inhaled nanoparticles are deposited on the lung surface. In conventional methods for such experiments up to now, cell cultures were bathed in nanoparticle solutions. However, this can cause the nanoparticles to agglomerate, which alters their properties; moreover, the lung surface is wet in a different way. Consequently, the behavior of the cells might also change.

No cell death

The scientists chose cerium oxide for their study, mainly because the material does not occur physiologically in cells, meaning that only the effect of the nanoparticle on the cell is observed. The longer the cultures were sprayed for, the more nanoparticles were deposited on the lung cells. The scientists observed that the cells were not destroyed, i.e. they did not die. However, the permeability of the cell layer increased. Therefore, the researchers suspect that certain structures of particular proteins that seal the interstices between the epithelial cells had altered under the influence of the nanoparticles. The production of a substance in the cell which is associated with oxidative stress and which could result in DNA damage could also be observed.

Long-term effects unknown

Robert Grass, group leader in Wendelin Stark's group, explains: "However, we were unable to observe the effect of the particles on the cells over a prolonged time." This is because the cultures must be subjected to further processing to allow them to be examined under a microscope. In a next step, the researchers plan to replicate even more realistic conditions by using what are known as triple cell co-cultures that simulate human cellular respiratory tract barriers. For example, they want to find out how the body's phagocytes and "waste disposal agents", known as macrophages, deal with nanoparticles.

Author: Simone Ulmer

Literature reference
Rothen-Rutishauser B, Grass RN, Blank F, Limbach LK, Mühlfeld C, Brandenberger C, Raemy DO, Gehr P & Stark WJ: Direct Combination of Nanoparticle Fabrication and Exposure to Lung Cell Cultures in a Closed Setup as a Method To Simulate Accidental Nanoparticle Exposure of Humans, Environ. Sci. Technol., On-line publication 2 March 2009 DOI: 10.1021/es8029347

####

About ETH Zurich
ETH Zurich is an institution of the Swiss Confederation dedicated to higher learning and research. Together with the ETH Lausanne and four research institutes, it forms the federally directed, and to a major degree financed, ETH domain. The institutions of the ETH domain uphold their autonomy and identity on the basis of the ETH Federal Law and in the full awareness of their social, economic and cultural responsibility to the nation and its citizens.

For more information, please click here

Contacts:
ETH Zurich
Editorial Office
HG F 41
Raemistrasse 101
8092 Zurich
SWITZERLAND

Fax +41 44 632 17 16

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Powders

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Ceramics and Nanoceramic Powders Market To 2015: Acute Market Reports July 20th, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Reducing energy usage with nano-coatings April 9th, 2015

Preparing for Nano

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Food/Agriculture/Supplements

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Water, water -- the two types of liquid water: Understanding water's behavior could help with Alzheimer's research November 11th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Industrial

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Forge Nano raises $20 million in Series A Funding: Nano coating technology innovator Forge Nano will use funding to expand manufacturing capacity and grow Lithium-Ion battery opportunities November 3rd, 2016

SUN shares its latest achievements during the 3rd Annual Project Meeting November 1st, 2016

Personal Care/Cosmetics

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Safety-Nanoparticles/Risk management

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

SUN shares its latest achievements during the 3rd Annual Project Meeting November 1st, 2016

The Sustainable Nanotechnologies Project’s Final Events: Bringing Nano Environmental Health and Safety Assessment to the Wider Discussion on Risk Governance of Key Enabling Technologies November 1st, 2016

Exploding smartphones: What's the silent danger lurking in our rechargeable devices? New research identifies toxic emissions released by lithium-ion batteries October 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project