Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano Changes Rise to Macro Importance in a Key Electronics Material

Abstract:
By combining the results of a number of powerful techniques for studying material structure at the nanoscale, a team of researchers from the National Institute of Standards and Technology (NIST), working with colleagues in other federal labs and abroad, believe they have settled a long-standing debate over the source of the unique electronic properties of a material with potentially great importance for wireless communications.

Nano Changes Rise to Macro Importance in a Key Electronics Material

Gaithersburg, MD | Posted on April 8th, 2009

The new study* of silver niobate not only opens the door to engineering improved electronic components for smaller, higher performance wireless devices, but also serves as an example of understanding how subtle nanoscale features of a material can give rise to major changes in its physical properties.

Silver niobate is a ceramic dielectric, a class of materials used to make capacitors, filters and other basic components of wireless communications equipment and other high-frequency electronic devices. A useful dielectric needs to have a large dielectric constant—roughly, a measure of the material's ability to hold an electric charge—that is stable in the operating temperature range. The material also should have low dielectric losses—which means that it does not waste energy as heat and preserves much of its intended signal strength. In the important gigahertz range of the radio spectrum—used for a wide variety of wireless applications—silver niobate-based ceramics are the only materials known that combine a high, temperature-stable dielectric constant with sufficiently low dielectric losses.

It's been known for some time that silver niobate's unique dielectric properties are temperature dependent—the dielectric constant peaks in a broad range near room temperature in these ceramics, which makes them suitable for practical applications. Earlier studies were unable to identify the structural basis of the unusual dielectric response because no accompanying changes in the overall crystal structure could be observed. "The crystal symmetry doesn't seem to change at those temperatures," explains NIST materials scientist Igor Levin, "but that's because people were using standard techniques that tell you the average structure. The important changes happen at the nanoscale and are lost in averages."

Only in recent years, says Levin, have the specialized instruments and analytic techniques been available to probe nanoscale structural changes in crystals. Even so, he says, "these subtle deviations from the average are so small that any single measurement gives only partial information on the structure. You need to combine several complementary techniques that look at different angles of the problem." Working at different facilities** the team combined results from several high-resolution probes using X-rays, neutrons and electrons—tools that are sensitive to both the local and average crystal structure— to understand silver niobate's dielectric properties. The results revealed an intricate interplay between the oxygen atoms, arranged in an octahedral pattern that defines the compound's crystal structure, and the niobium atoms at the centers of the octahedra.

At high temperatures, the niobium atoms are slightly displaced, but their average position remains in the center—so the shift isn't seen in averaging measurements. As the compound cools, the oxygen atoms cooperate by moving a little, causing the octahedral structure to rotate slightly. This movement generates strain which "locks" the niobium atoms into off-centered positions—but not completely. The resulting partial disorder of the niobium atoms gives rise to the dielectric properties. The results, the researchers say, point to potential avenues for engineering similar properties in other compounds.

The work was supported in part by the U.S. Department of Energy and the U.K. Science and Technology Facilities Council.

* I. Levin, V. Krayzman, J.C. Woicik, J. Karapetrova, T. Proffen, M.G. Tucker and I.M. Reaney. Structural changes underlying the diffuse dielectric response in AgNbO3. Phys. Rev. B 79, 104113, posted online March 26, 2009.

** The study required measurements at the Advanced Photon Source at Argonne National Laboratory, the Lujan Neutron Center at Los Alamos National Laboratory and the ISIS Pulsed Neutron and Muon Source at Rutherford Appleton Laboratory (United Kingdom). In addition to NIST, researchers from Argonne, Los Alamos, ISIS and the University of Sheffield contributed to the paper.


####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact: Michael Baum, (301) 975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Possible Futures

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Chip Technology

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Nanoelectronics

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Discoveries

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Announcements

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project