Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano Changes Rise to Macro Importance in a Key Electronics Material

Abstract:
By combining the results of a number of powerful techniques for studying material structure at the nanoscale, a team of researchers from the National Institute of Standards and Technology (NIST), working with colleagues in other federal labs and abroad, believe they have settled a long-standing debate over the source of the unique electronic properties of a material with potentially great importance for wireless communications.

Nano Changes Rise to Macro Importance in a Key Electronics Material

Gaithersburg, MD | Posted on April 8th, 2009

The new study* of silver niobate not only opens the door to engineering improved electronic components for smaller, higher performance wireless devices, but also serves as an example of understanding how subtle nanoscale features of a material can give rise to major changes in its physical properties.

Silver niobate is a ceramic dielectric, a class of materials used to make capacitors, filters and other basic components of wireless communications equipment and other high-frequency electronic devices. A useful dielectric needs to have a large dielectric constant—roughly, a measure of the material's ability to hold an electric charge—that is stable in the operating temperature range. The material also should have low dielectric losses—which means that it does not waste energy as heat and preserves much of its intended signal strength. In the important gigahertz range of the radio spectrum—used for a wide variety of wireless applications—silver niobate-based ceramics are the only materials known that combine a high, temperature-stable dielectric constant with sufficiently low dielectric losses.

It's been known for some time that silver niobate's unique dielectric properties are temperature dependent—the dielectric constant peaks in a broad range near room temperature in these ceramics, which makes them suitable for practical applications. Earlier studies were unable to identify the structural basis of the unusual dielectric response because no accompanying changes in the overall crystal structure could be observed. "The crystal symmetry doesn't seem to change at those temperatures," explains NIST materials scientist Igor Levin, "but that's because people were using standard techniques that tell you the average structure. The important changes happen at the nanoscale and are lost in averages."

Only in recent years, says Levin, have the specialized instruments and analytic techniques been available to probe nanoscale structural changes in crystals. Even so, he says, "these subtle deviations from the average are so small that any single measurement gives only partial information on the structure. You need to combine several complementary techniques that look at different angles of the problem." Working at different facilities** the team combined results from several high-resolution probes using X-rays, neutrons and electrons—tools that are sensitive to both the local and average crystal structure— to understand silver niobate's dielectric properties. The results revealed an intricate interplay between the oxygen atoms, arranged in an octahedral pattern that defines the compound's crystal structure, and the niobium atoms at the centers of the octahedra.

At high temperatures, the niobium atoms are slightly displaced, but their average position remains in the center—so the shift isn't seen in averaging measurements. As the compound cools, the oxygen atoms cooperate by moving a little, causing the octahedral structure to rotate slightly. This movement generates strain which "locks" the niobium atoms into off-centered positions—but not completely. The resulting partial disorder of the niobium atoms gives rise to the dielectric properties. The results, the researchers say, point to potential avenues for engineering similar properties in other compounds.

The work was supported in part by the U.S. Department of Energy and the U.K. Science and Technology Facilities Council.

* I. Levin, V. Krayzman, J.C. Woicik, J. Karapetrova, T. Proffen, M.G. Tucker and I.M. Reaney. Structural changes underlying the diffuse dielectric response in AgNbO3. Phys. Rev. B 79, 104113, posted online March 26, 2009.

** The study required measurements at the Advanced Photon Source at Argonne National Laboratory, the Lujan Neutron Center at Los Alamos National Laboratory and the ISIS Pulsed Neutron and Muon Source at Rutherford Appleton Laboratory (United Kingdom). In addition to NIST, researchers from Argonne, Los Alamos, ISIS and the University of Sheffield contributed to the paper.


####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact: Michael Baum, (301) 975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Nanoelectronics

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Sharper nanoscopy: What happens when a quantum dot looks in a mirror? March 19th, 2015

Discoveries

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE