Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Nanogenerator May Charge Ipods and Cell Phones with a Wave of the Hand

A schematic illustration shows the microfiber-nanowire hybrid nanogenerator, which is the basis of using fabrics for generating electricity.
A schematic illustration shows the microfiber-nanowire hybrid nanogenerator, which is the basis of using fabrics for generating electricity.

Abstract:
Imagine if all you had to do to charge your iPod or your BlackBerry was to wave your hand, or stretch your arm, or take a walk? You could say goodbye to batteries and never have to plug those devices into a power source again.

New Nanogenerator May Charge Ipods and Cell Phones with a Wave of the Hand

Salt Lake City, UT | Posted on March 27th, 2009

In research presented here today at the American Chemical Society's 237th National Meeting, scientists from Georgia describe technology that converts mechanical energy from body movements or even the flow of blood in the body into electric energy that can be used to power a broad range of electronic devices without using batteries.

"This research will have a major impact on defense technology, environmental monitoring, biomedical sciences and even personal electronics," says lead researcher Zhong Lin Wang, Regents' Professor, School of Material Science and Engineering at the Georgia Institute of Technology. The new "nanogenerator" could have countless applications, among them a way to run electronic devices used by the military when troops are far in the field.

The researchers describe harvesting energy from the environment by converting low-frequency vibrations, like simple body movements, the beating of the heart or movement of the wind, into electricity, using zinc oxide (ZnO) nanowires that conduct the electricity. The ZnO nanowires are piezoelectric — they generate an electric current when subjected to mechanical stress. The diameter and length of the wire are 1/5,000th and 1/25th the diameter of a human hair.

In generating energy from movement, Wang says his team concluded that it was most effective to develop a method that worked at low frequencies and was based on flexible materials. The ZnO nanowires met these requirements. At the same time, he says a real advantage of this technology is that the nanowires can be grown easily on a wide variety of surfaces, and the nanogenerators will operate in the air or in liquids once properly packaged. Among the surfaces on which the nanowires can be grown are metals, ceramics, polymers, clothing and even tents.

"Quite simply, this technology can be used to generate energy under any circumstances as long as there is movement," according to Wang.

To date, he says that there have been limited methods created to produce nanopower despite the growing need by the military and defense agencies for nanoscale sensing devices used to detect bioterror agents. The nanogenerator would be particularly critical to troops in the field, where they are far from energy sources and need to use sensors or communication devices. In addition, having a sensor which doesn't need batteries could be extremely useful to the military and police sampling air for potential bioterrorism attacks in the United States, Wang says.

While biosensors have been miniaturized and can be implanted under the skin, he points out that these devices still require batteries, and the new nanogenerator would offer much more flexibility.

A major advantage of this new technology is that many nanogenerators can produce electricity continuously and simultaneously. On the other hand, the greatest challenge in developing these nanogenerators is to improve the output voltage and power, he says.

Last year Wang's group presented a study on nanogenerators driven by ultrasound. Today's research represents a much broader application of nanogenerators as driven by low-frequency body movement.

The study was funded by the Defense Advanced Research Projects Agency, the Department of Energy, the National Institutes of Health and the National Science Foundation.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Contacts:
Michael Bernstein
801-534-4748
(Salt Lake City, March 21-25)
202-872-6042 (Washington, D.C.)


Michael Woods
801-534-4748
(Salt Lake City, March 21-25)
202-872-6293 (Washington, D.C.)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Possible Futures

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Announcements

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Homeland Security

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Military

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

A Phone That Charges in Seconds? UCF Scientists Bring it Closer to Reality November 21st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Vesper a Finalist for Two ACE Awards: Ultimate Products and Innovator of the Year -- Industry’s first piezoelectric MEMS microphone and Vesper CTO Bobby Littrell recognized for prestigious electronics-industry awards November 10th, 2016

Events/Classes

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

IEDM: Leti CEO Marie Semeria to Give Opening-day Keynote on Impact of ‘Hyperconnectivity’ and IoT: Speech to Portray Key Role Nonprofit Research and Technology Organizations Play in Making Technology More Efficient and Ensuring Safety and Security November 29th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project