Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > U-M engineer's memristor chip could lead to faster, cheaper computers

Abstract:
The memristor is a computer component that offers both memory and logic functions in one simple package. It has the potential to transform the semiconductor industry, enabling smaller, faster, cheaper chips and computers.

U-M engineer's memristor chip could lead to faster, cheaper computers

Ann Arbor, MI | Posted on March 20th, 2009

A University of Michigan electrical engineer has taken a step toward this end by building a chip composed of nanoscale memristors that can store up to 1 kilobit of information.

Previously, only a few memristor circuits had been demonstrated, rather than such a large-scale array, due to reliability and reproducibility issues. While 1 kilobit is not a huge amount of information, the researchers consider it a leap that will make it easier to scale the technology so it can store much more data.

"We demonstrated CMOS-compatible, ultra-high-density memory arrays based on a silicon memristive system. This is an important first step." said Wei Lu, an assistant professor in the Department of Electrical Engineering and Computer Science. CMOS stands for complementary metal oxide semiconductor. It is the technology used in modern microchips.

Moore's law, which predicts that technology will double the number of transistors that fit on an integrated circuit every two years, has held true since the mid 1960s. The more transistors on a chip, the faster the chip can operate. But this is getting more and more difficult to achieve, Lu said.

"This transistor scaling now faces several practical and fundamental challenges including increased power dissipation as transistors shrink, difficulties in laying out all the necessary interconnects, and the high cost to minimize device variations," Lu said. "Memristors have a simpler structure and are attractive for applications such as memories because it is much easier to pack a large number of them on a single chip to achieve the highest possible density."

The density of a memristor-based memory chip could be at least an order of magnitude—a factor of 10—higher than current transistor-based chips. Such high density circuits can also be very fast, Lu says. You could save data to a memristor memory three orders of magnitude faster than saving to today's flash memory, for example.

Another benefit of memristor memory is that it's not volatile, as today's DRAM memory is. DRAM, which stands for dynamic random access memory, is part of your computer's quick-access memory that helps the machine run faster. DRAM is overwritten multiple times a second because it fades with time. Memristor memory would not have to be overwritten. It is more stable.

Lu says memristors could open the door to universal memory. And because of how densely they can be crammed onto integrated circuits, memristors also offer hope for robust biologically-inspired logic circuits. Each neuron in the human brain is connected to 10,000 other neurons through synapses, Lu says. Engineers can't achieve that kind of connectivity with today's transistor-based circuits. But memristor circuits could potentially overcome this problem.

A paper on this research, "High-density crossbar arrays based on a Si memristive system," is published in Nano Letters. Other authors are Sung Hyun Jo and Kuk-Hwan Kim, doctoral students in Lu's department.

This research is supported by the National Science Foundation.

####

About University of Michigan
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. For more information, visit: www.engin.umich.edu

Contacts:
Nicole Moore
734-647-1838

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Cima NanoTech Debuts Large Interactive Touch Screens with European Customers at ISE 2016: For the first time in Europe, Cima NanoTech’s wide range of high performance, projected capacitive touch modules are showcased February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Possible Futures

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Chip Technology

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Memory Technology

A step towards keeping up with Moore's Law: POSTECH researchers develop a novel and efficient fabrication technology for cross-shaped memristor January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

First all-antiferromagnetic memory device could get digital data storage in a spin January 16th, 2016

Nanoelectronics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Announcements

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Cima NanoTech Debuts Large Interactive Touch Screens with European Customers at ISE 2016: For the first time in Europe, Cima NanoTech’s wide range of high performance, projected capacitive touch modules are showcased February 11th, 2016

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic