Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > U-M engineer's memristor chip could lead to faster, cheaper computers

Abstract:
The memristor is a computer component that offers both memory and logic functions in one simple package. It has the potential to transform the semiconductor industry, enabling smaller, faster, cheaper chips and computers.

U-M engineer's memristor chip could lead to faster, cheaper computers

Ann Arbor, MI | Posted on March 20th, 2009

A University of Michigan electrical engineer has taken a step toward this end by building a chip composed of nanoscale memristors that can store up to 1 kilobit of information.

Previously, only a few memristor circuits had been demonstrated, rather than such a large-scale array, due to reliability and reproducibility issues. While 1 kilobit is not a huge amount of information, the researchers consider it a leap that will make it easier to scale the technology so it can store much more data.

"We demonstrated CMOS-compatible, ultra-high-density memory arrays based on a silicon memristive system. This is an important first step." said Wei Lu, an assistant professor in the Department of Electrical Engineering and Computer Science. CMOS stands for complementary metal oxide semiconductor. It is the technology used in modern microchips.

Moore's law, which predicts that technology will double the number of transistors that fit on an integrated circuit every two years, has held true since the mid 1960s. The more transistors on a chip, the faster the chip can operate. But this is getting more and more difficult to achieve, Lu said.

"This transistor scaling now faces several practical and fundamental challenges including increased power dissipation as transistors shrink, difficulties in laying out all the necessary interconnects, and the high cost to minimize device variations," Lu said. "Memristors have a simpler structure and are attractive for applications such as memories because it is much easier to pack a large number of them on a single chip to achieve the highest possible density."

The density of a memristor-based memory chip could be at least an order of magnitude—a factor of 10—higher than current transistor-based chips. Such high density circuits can also be very fast, Lu says. You could save data to a memristor memory three orders of magnitude faster than saving to today's flash memory, for example.

Another benefit of memristor memory is that it's not volatile, as today's DRAM memory is. DRAM, which stands for dynamic random access memory, is part of your computer's quick-access memory that helps the machine run faster. DRAM is overwritten multiple times a second because it fades with time. Memristor memory would not have to be overwritten. It is more stable.

Lu says memristors could open the door to universal memory. And because of how densely they can be crammed onto integrated circuits, memristors also offer hope for robust biologically-inspired logic circuits. Each neuron in the human brain is connected to 10,000 other neurons through synapses, Lu says. Engineers can't achieve that kind of connectivity with today's transistor-based circuits. But memristor circuits could potentially overcome this problem.

A paper on this research, "High-density crossbar arrays based on a Si memristive system," is published in Nano Letters. Other authors are Sung Hyun Jo and Kuk-Hwan Kim, doctoral students in Lu's department.

This research is supported by the National Science Foundation.

####

About University of Michigan
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. For more information, visit: www.engin.umich.edu

Contacts:
Nicole Moore
734-647-1838

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers engineer improvements of technology used in digital memory November 24th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Chip Technology

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Memory Technology

Researchers engineer improvements of technology used in digital memory November 24th, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Nanoelectronics

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Announcements

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE