Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UConn chemists find secret to increasing luminescence efficiency of carbon nanotubes

Abstract:
Breakthrough procedure has potential applications in medical imaging, homeland security, biological sensors

UConn chemists find secret to increasing luminescence efficiency of carbon nanotubes

Storrs, CT | Posted on March 6th, 2009

Chemists at the University of Connecticut have found a way to greatly increase the luminescence efficiency of single-walled carbon nanotubes, a discovery that could have significant applications in medical imaging and other areas.

Increasing the luminescence efficiency of carbon nanotubes may someday make it possible for doctors to inject patients with microscopic nanotubes to detect tumors, arterial blockages and other internal problems. Rather than relying on potentially harmful x-rays or the use of radioactive dyes, physicians could simply scan patients with an infrared light that would capture a very sharp resolution of the luminescence of the nanotubes in problem areas.

UConn's process of increasing the luminescence efficiency of single-walled carbon nanotubes will be featured in Science magazine on Friday, March 6, 2009. The research was performed in the Nanomaterials Optoelectronics Laboratory at the Institute of Materials Science at the University of Connecticut, in Storrs, CT. A patent for the process is pending.

University of Connecticut Chemist Fotios Papadimitrakopoulos describes the discovery as a major breakthrough and one of the most significant discoveries in his 10 years of working with single-walled carbon nanotubes. Assisting Papadimitrakopoulos with the research were Polymer Program graduate student Sang-Yong Ju (now a researcher at Cornell University) and William P. Kopcha, a former Chemistry undergraduate assistant in the College of Liberal Arts and Sciences who is now a first-year graduate student at UConn.

Although carbon is used in many diverse applications, scientists have long been stymied by the element's limited ability to emit light. The best scientists have been able to do with solution-suspended carbon nanotubes was to raise their luminescence efficiency to about one-half of one percent, which is extremely low compared to other materials, such as quantum dots and quantum rods.

By tightly wrapping a chemical 'sleeve' around a single-walled carbon nanotube, Papadimitrakopoulos and his research team were able to reduce exterior defects caused by chemically absorbed oxygen molecules.

This process can best be explained by imagining sliding a small tube into a slightly larger diameter tube, Papadimitrakopoulos says. In order for this to happen, all deposits or protrusions on the smaller tube have to be removed before the tube is allowed to slip into the slightly larger diameter tube. What is most fascinating with carbon nanotubes however, Papadimitrakopoulos says, is the fact that in this case the larger tube is not as rigid as the first tube (i.e. carbon nanotube) but is rather formed by a chemical "sleeve" comprised of a synthetic derivative of flavin (an analog of vitamin B2) that adsorbs and self organizes onto a conformal tube.
Papadimitrakopoulos claims that this process of self-assembly is unique in that it not only forms a new structure but also actively "cleans" the surface of the underlying nanotube. It is that active cleaning of the nanotube surface that allows the nanotube to achieve luminescence efficiency to as high as 20 percent.

NOTE: To see a QuickTime animation of how a single-walled carbon nanotube is wrapped with the synthetic flavin derivative to increase its luminescence go to: www.ims.uconn.edu/~papadim/research.htm

"The nanotube is the smallest tube on earth and we have found a sleeve to put over it," Papadimitrakopoulos says. "This is the first time that a nanotube was found to emit with as much as 20 percent luminescence efficiency."

Papadimitrakopoulos has been working closely with the UConn Center for Science and Technology Commercialization (CSTC) in transferring his advances in research into the realm of patents, licenses and corporate partnerships. The CSTC was created several years ago as a way to help expand Connecticut's innovation-based economy and to help create new businesses and jobs around new ideas.

This is the second major nanotube discovery at UConn by Papadimitrakopoulos in the past two years. Last year, Papadimitrakopoulos and Sang-Young Ju, along with other UConn researchers, patented a way to isolate certain carbon nanotubes from others by seamlessly wrapping a form of vitamin B2 around the nanotubes. It was out of that research that Papadimitrakopoulos and Sang-Yong Ju began wrapping nanotubes with helical assemblies and probing their luminescence properties.

The more luminescent the nanotube, the brighter it appears under infrared irradiation or by electrical excitation (such as that provided by a light-emitting diode or LED). A number of important applications may be possible as a result of this research, Papadimitrakopoulos says. Carbon nanotube emissions are not only extremely sharp, but they also appear in a spectral region where minimal absorption or scattering takes place by soft tissue. Moreover, carbon nanotubes display superb photo bleaching stability and are ideally suited for near-infrared emitters, making them appropriate for applications in medicine and homeland security as bio-reporting agents and nano-sized beacons. Carbon nanotube luminescence also has important applications in nano-scaled LEDs and photo detectors, which can readily integrate with silicon-based technology. This provides an enormous repertoire for nanotube use in advanced fiber optics components, infrared light modulators, and biological sensors, where multiple applications are possible due to the nanotube's flavin-based (vitamin B2) helical wrapping.

A complete copy of the research article that will appear in Science magazine on Friday, March 6, will be available after 2 p.m. on Thursday, March 5 at: www.sciencemag.org/sciencexpress/recent.dtl

More information about the University of Connecticut's Nanomaterials Optoelectronics Laboratory can be found at: chemistry.uconn.edu/papadim/index.htm

####

For more information, please click here

Contacts:
Colin Poitras

860-486-4656

Additional Contact Information:
Fotios Papadimitrakopoulos
Professor of Chemistry
Associate Director
Institute of Materials Science
University of Connecticut
Tel: (860)-486-3447
Fax: (860)-486-4745

Copyright © University of Connecticut

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Imaging

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Chemistry

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Highlights for 2014 national meeting of world’s largest scientific society July 8th, 2014

Nanotubes/Buckyballs

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Sensors

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Discoveries

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Measuring the Smallest Magnets July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Homeland Security

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Nanotubes boost terahertz detectors: Rice-led project may dramatically improve medical imaging, passenger screening, food inspection June 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE