Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UConn chemists find secret to increasing luminescence efficiency of carbon nanotubes

Abstract:
Breakthrough procedure has potential applications in medical imaging, homeland security, biological sensors

UConn chemists find secret to increasing luminescence efficiency of carbon nanotubes

Storrs, CT | Posted on March 6th, 2009

Chemists at the University of Connecticut have found a way to greatly increase the luminescence efficiency of single-walled carbon nanotubes, a discovery that could have significant applications in medical imaging and other areas.

Increasing the luminescence efficiency of carbon nanotubes may someday make it possible for doctors to inject patients with microscopic nanotubes to detect tumors, arterial blockages and other internal problems. Rather than relying on potentially harmful x-rays or the use of radioactive dyes, physicians could simply scan patients with an infrared light that would capture a very sharp resolution of the luminescence of the nanotubes in problem areas.

UConn's process of increasing the luminescence efficiency of single-walled carbon nanotubes will be featured in Science magazine on Friday, March 6, 2009. The research was performed in the Nanomaterials Optoelectronics Laboratory at the Institute of Materials Science at the University of Connecticut, in Storrs, CT. A patent for the process is pending.

University of Connecticut Chemist Fotios Papadimitrakopoulos describes the discovery as a major breakthrough and one of the most significant discoveries in his 10 years of working with single-walled carbon nanotubes. Assisting Papadimitrakopoulos with the research were Polymer Program graduate student Sang-Yong Ju (now a researcher at Cornell University) and William P. Kopcha, a former Chemistry undergraduate assistant in the College of Liberal Arts and Sciences who is now a first-year graduate student at UConn.

Although carbon is used in many diverse applications, scientists have long been stymied by the element's limited ability to emit light. The best scientists have been able to do with solution-suspended carbon nanotubes was to raise their luminescence efficiency to about one-half of one percent, which is extremely low compared to other materials, such as quantum dots and quantum rods.

By tightly wrapping a chemical 'sleeve' around a single-walled carbon nanotube, Papadimitrakopoulos and his research team were able to reduce exterior defects caused by chemically absorbed oxygen molecules.

This process can best be explained by imagining sliding a small tube into a slightly larger diameter tube, Papadimitrakopoulos says. In order for this to happen, all deposits or protrusions on the smaller tube have to be removed before the tube is allowed to slip into the slightly larger diameter tube. What is most fascinating with carbon nanotubes however, Papadimitrakopoulos says, is the fact that in this case the larger tube is not as rigid as the first tube (i.e. carbon nanotube) but is rather formed by a chemical "sleeve" comprised of a synthetic derivative of flavin (an analog of vitamin B2) that adsorbs and self organizes onto a conformal tube.
Papadimitrakopoulos claims that this process of self-assembly is unique in that it not only forms a new structure but also actively "cleans" the surface of the underlying nanotube. It is that active cleaning of the nanotube surface that allows the nanotube to achieve luminescence efficiency to as high as 20 percent.

NOTE: To see a QuickTime animation of how a single-walled carbon nanotube is wrapped with the synthetic flavin derivative to increase its luminescence go to: www.ims.uconn.edu/~papadim/research.htm

"The nanotube is the smallest tube on earth and we have found a sleeve to put over it," Papadimitrakopoulos says. "This is the first time that a nanotube was found to emit with as much as 20 percent luminescence efficiency."

Papadimitrakopoulos has been working closely with the UConn Center for Science and Technology Commercialization (CSTC) in transferring his advances in research into the realm of patents, licenses and corporate partnerships. The CSTC was created several years ago as a way to help expand Connecticut's innovation-based economy and to help create new businesses and jobs around new ideas.

This is the second major nanotube discovery at UConn by Papadimitrakopoulos in the past two years. Last year, Papadimitrakopoulos and Sang-Young Ju, along with other UConn researchers, patented a way to isolate certain carbon nanotubes from others by seamlessly wrapping a form of vitamin B2 around the nanotubes. It was out of that research that Papadimitrakopoulos and Sang-Yong Ju began wrapping nanotubes with helical assemblies and probing their luminescence properties.

The more luminescent the nanotube, the brighter it appears under infrared irradiation or by electrical excitation (such as that provided by a light-emitting diode or LED). A number of important applications may be possible as a result of this research, Papadimitrakopoulos says. Carbon nanotube emissions are not only extremely sharp, but they also appear in a spectral region where minimal absorption or scattering takes place by soft tissue. Moreover, carbon nanotubes display superb photo bleaching stability and are ideally suited for near-infrared emitters, making them appropriate for applications in medicine and homeland security as bio-reporting agents and nano-sized beacons. Carbon nanotube luminescence also has important applications in nano-scaled LEDs and photo detectors, which can readily integrate with silicon-based technology. This provides an enormous repertoire for nanotube use in advanced fiber optics components, infrared light modulators, and biological sensors, where multiple applications are possible due to the nanotube's flavin-based (vitamin B2) helical wrapping.

A complete copy of the research article that will appear in Science magazine on Friday, March 6, will be available after 2 p.m. on Thursday, March 5 at: www.sciencemag.org/sciencexpress/recent.dtl

More information about the University of Connecticut's Nanomaterials Optoelectronics Laboratory can be found at: chemistry.uconn.edu/papadim/index.htm

####

For more information, please click here

Contacts:
Colin Poitras

860-486-4656

Additional Contact Information:
Fotios Papadimitrakopoulos
Professor of Chemistry
Associate Director
Institute of Materials Science
University of Connecticut
Tel: (860)-486-3447
Fax: (860)-486-4745

Copyright © University of Connecticut

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Chemistry

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Imaging

Oxford Instrumentsí 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Sensors

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Discoveries

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Homeland Security

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project