Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscopic static electricity generates chiral patterns

Abstract:
In the tiny world of amino acids and proteins and in the helical shape of DNA, a biological phenomenon abounds.

These objects are all chiral — they cannot exactly superimpose their mirror image by translation or rotation. A common example of this is human hands — a right hand cannot superimpose itself into its mirror image, a left hand. This description of a molecule's symmetry (or lack thereof) is important in determining the molecule's properties in chemistry.

Nanoscopic static electricity generates chiral patterns

Chicago, IL | Posted on February 3rd, 2009

But while scientists and engineers know that at the sub-atomic level weak forces are chiral, how these electrostatic forces can generate a chiral world is still a mystery.

Researchers at Northwestern University in the group of Monica Olvera de la Cruz, professor of materials science and engineering and chemical and biological engineering at the McCormick School of Engineering and Applied Science, have recently shown how electrostatic interactions — commonly known as static electricity — alone can give rise to helical shapes. The group has constructed a mathematical model that can capture all possible regular shapes chiral objects could have, and they computed the preferred arrangements induced by electrostatic interactions.

Their work will be published as the cover story in the journal Soft Matter and is published online.

"In this way we are simply letting nature tell us how it would like to be, and we generalize it to many different systems," Olvera de la Cruz says." She and her colleagues report that chirality can only spontaneously arise as a consequence of electrostatic interactions and does not require the presence of other more complicated interactions, like dipolar or short-range van der Waals interactions.

Their model also describes arrangement of DNA mixed with carbon nanotubes. DNA has been shown to form helices around nanotubes, thereby separating the different types of carbon nanotubes into families.

The research findings concur with previous research using microscopy.

"From our predicted helical shapes of DNA wrapped around carbon nanotubes, we found amazing correspondence to those that were recently measured by atomic force microscopy," Olvera de le Cruz says.

The work shows that electrostatics is a pathway for understanding how nature generates helical symmetries. Researchers hope that future work can show how to use simple interactions to generate other symmetries that drive complex phenomena.

The research was done in the department of materials science and engineering. Graziano Vernizzi, research assistant professor, and Kevin Kohlstedt, graduate student, co-authored the paper.

The work was supported by the Department of Energy Computational Science Graduate Fellowship and the National Science Foundation.

####

For more information, please click here

Contacts:
Kyle Delaney

847-467-4010

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Chemistry

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Nanosorbent Produced in Iran to Adsorb Tiny Amounts of Aromatic Hydrocarbon from Seawater May 18th, 2015

Science and Technology of Advanced Materials (STAM): Reported successes and failures aid hot pursuit of superconductivity May 15th, 2015

Biomimetics

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Peptoid Nanosheets at the Oil/Water Interface: Berkeley Lab Reports New Route to Novel Family of Biomimetic Materials September 3rd, 2014

Nanoscaled Tip Writes Artificial Cell Membranes: Biomimetic Membranes on Graphene Open up Novel Applications in Biotechnology – Publication in “Nature Communications“ October 15th, 2013

2539 visits at NANOPOSTER 2013 - Summary of 3rd Virtual Nanotechnology Poster Conference September 17th, 2013

Govt.-Legislation/Regulation/Funding/Policy

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Discoveries

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project