Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscopic static electricity generates chiral patterns

Abstract:
In the tiny world of amino acids and proteins and in the helical shape of DNA, a biological phenomenon abounds.

These objects are all chiral — they cannot exactly superimpose their mirror image by translation or rotation. A common example of this is human hands — a right hand cannot superimpose itself into its mirror image, a left hand. This description of a molecule's symmetry (or lack thereof) is important in determining the molecule's properties in chemistry.

Nanoscopic static electricity generates chiral patterns

Chicago, IL | Posted on February 3rd, 2009

But while scientists and engineers know that at the sub-atomic level weak forces are chiral, how these electrostatic forces can generate a chiral world is still a mystery.

Researchers at Northwestern University in the group of Monica Olvera de la Cruz, professor of materials science and engineering and chemical and biological engineering at the McCormick School of Engineering and Applied Science, have recently shown how electrostatic interactions — commonly known as static electricity — alone can give rise to helical shapes. The group has constructed a mathematical model that can capture all possible regular shapes chiral objects could have, and they computed the preferred arrangements induced by electrostatic interactions.

Their work will be published as the cover story in the journal Soft Matter and is published online.

"In this way we are simply letting nature tell us how it would like to be, and we generalize it to many different systems," Olvera de la Cruz says." She and her colleagues report that chirality can only spontaneously arise as a consequence of electrostatic interactions and does not require the presence of other more complicated interactions, like dipolar or short-range van der Waals interactions.

Their model also describes arrangement of DNA mixed with carbon nanotubes. DNA has been shown to form helices around nanotubes, thereby separating the different types of carbon nanotubes into families.

The research findings concur with previous research using microscopy.

"From our predicted helical shapes of DNA wrapped around carbon nanotubes, we found amazing correspondence to those that were recently measured by atomic force microscopy," Olvera de le Cruz says.

The work shows that electrostatics is a pathway for understanding how nature generates helical symmetries. Researchers hope that future work can show how to use simple interactions to generate other symmetries that drive complex phenomena.

The research was done in the department of materials science and engineering. Graziano Vernizzi, research assistant professor, and Kevin Kohlstedt, graduate student, co-authored the paper.

The work was supported by the Department of Energy Computational Science Graduate Fellowship and the National Science Foundation.

####

For more information, please click here

Contacts:
Kyle Delaney

847-467-4010

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Chemistry

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Fun with Lego (molecules) January 28th, 2016

Biomimetics

IEEE ROBIO 2015 Call for Papers: 2015 IEEE International Conference on Robotics and Biomimetics - December 6-9, 2015, Zhuhai, China July 19th, 2015

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Peptoid Nanosheets at the Oil/Water Interface: Berkeley Lab Reports New Route to Novel Family of Biomimetic Materials September 3rd, 2014

Nanoscaled Tip Writes Artificial Cell Membranes: Biomimetic Membranes on Graphene Open up Novel Applications in Biotechnology – Publication in “Nature Communications“ October 15th, 2013

Govt.-Legislation/Regulation/Funding/Policy

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Discoveries

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic