Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers

A preserved specimen of the Tenebrionind beetle (Physasterna cribripes) was used for this study, displaying the insect’s mechanisms of dew harvesting. | © Guadarrama-Cetina et al.
A preserved specimen of the Tenebrionind beetle (Physasterna cribripes) was used for this study, displaying the insect’s mechanisms of dew harvesting. | © Guadarrama-Cetina et al.

Abstract:
Insects are full of marvels - and this is certainly the case with a beetle from the Tenebrionind family, found in the extreme conditions of the Namib desert. Now, a team of scientists has demonstrated that such insects can collect dew on their backs - and not just fog as previously thought. This is made possible by the wax nanostructure on the surface of the beetle's elytra. These findings by José Guadarrama-Cetina, then working at ESPCI ParisTech, France - on leave from the University of Navarra, in Spain - and colleagues were recently published in EPJ E. They bring us a step closer to harvesting dew to make drinking water from the humidity in the air. This, the team hopes, can be done by improving the water yield of man-made dew condensers that mimick the nanostructure on the beetle's back.

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers

Heidelberg, Germany | Posted on December 8th, 2014

It was not clear from previous studies whether water harvested by such beetles came from dew droplets, in addition to fog. Whereas fog is made of ready-made microdroplets floating in the air, dew appears following the cooling of a substrate below air temperature. This then turns the humidity of air into tiny droplets of water because more energy - as can be measured through infrared emissions - is sent to the atmosphere than received by it. The cooling capability is ideal, they demonstrated, because the insect's back demonstrates near-perfect infrared emissivity.

Guadarrama-Cetina and colleagues also performed an image analysis of dew drops forming on the insect's back on the surface of the elytra, which appears as a series of bumps and valleys. Dew primarily forms in the valleys endowed with a hexagonal microstructure, they found, unlike the smooth surface of the bumps. This explains how drops can slide to the insect's mouth when they reach a critical size.

####

For more information, please click here

Contacts:
Laura Zimmermann

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: Guadarrama-Cetina, J.M. et al. (2014). Dew condensation on desert beetle skin. European Physical Journal E. DOI 10.1140/epje/i2014-14109-y:

Related News Press

News and information

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Biomimetics

Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016

IEEE ROBIO 2015 Call for Papers: 2015 IEEE International Conference on Robotics and Biomimetics - December 6-9, 2015, Zhuhai, China July 19th, 2015

Peptoid Nanosheets at the Oil/Water Interface: Berkeley Lab Reports New Route to Novel Family of Biomimetic Materials September 3rd, 2014

Nanoscaled Tip Writes Artificial Cell Membranes: Biomimetic Membranes on Graphene Open up Novel Applications in Biotechnology – Publication in “Nature Communications“ October 15th, 2013

Discoveries

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Announcements

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Water

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanobiotechnology

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Promising news from biomedicine: DNA origami more resilient than previously understood June 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project