Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Six Million Dollar Man prosthetics? New generation of orthopedic, dental and cardiovascular prostheses

Antonio Nanci
Antonio Nanci

Abstract:
The futuristic technology of the Six Million Dollar Man -specifically a part metal and part flesh human being - won't be exclusive to Hollywood anymore. While the main character in the Six Million Dollar Man was outfitted with metals to enhance his performance, a multidisciplinary team of scientists led by the Université de Montréal has discovered a process to produce new metal surfaces that promise to lead to superior medical implants that will improve healing and allow the human body to better accept metal prostheses.

Six Million Dollar Man prosthetics? New generation of orthopedic, dental and cardiovascular prostheses

Montreal, Canada | Posted on January 28th, 2009

According to new research published in Nano Letters , the scientists capitalized on recent advances in nanotechnology to change how metals can influence cell growth and development in the body. A critical aspect of the finding is that the surfaces can directly stimulate cells - thereby eliminating the need for pharmaceuticals and resulting side-effects. The study is a collaboration between the Université de Montréal, McGill University, the Institut National de la Recherche Scientifique (INRS-EMT), Plasmionique Inc and the Universidade de São Paulo.

"Using chemical modification, we have produced metals with intelligent surfaces that positively interact with cells and help control the biological healing response," says Antonio Nanci, the study's senior author and a professor at the Université de Montréal's Faculty of Dentistry. "These will be the building-blocks of new and improved metal implants that are expected to significantly affect the success of orthopedic, dental and cardiovascular prostheses."

Etching produces nanoporous surfaces

Dr. Nanci and colleagues applied chemical compounds to modify the surface of the common biomedical metals such as titanium. Exposing these metals to selected etching mixtures of acids and oxidants results in surfaces with a sponge-like pattern of nano (ultra small) pits. "We demonstrated that some cells stick better to these surfaces than they do to the traditional smooth ones," says Dr. Nanci. "This is already an improvement to the standard available biomaterial."

The researchers then tested the effects of the chemically-produced nanoporous titanium surfaces on cell growth and development. They showed that the treated surfaces increased growth of bone cells, decreased growth of unwanted cells and stimulated stem cells, relative to untreated smooth ones. In addition, expression of genes required for cell adhesion and growth were increased in contact with the nanoporous surfaces.

Different etchants have different effects

Uncontrolled growth of cells on an implant is not ideal. For example, when using cardiovascular stents, it is important to limit the growth of certain cells in order not interfere with blood flow. Also, in some cases, cells can form an undesirable capsule around dental implants causing them to fall. The scientists demonstrated that treatment with specific etchants reduced the growth of unwanted cells.

"An important element of this study is how we demonstrated the selective cellular effects of etching," says Dr. Nanci. "With subtle changes in chemical composition of etching mixtures, we can alter the nanopatterns that are created on the metal surface and control consequent cellular responses."

"Our study is groundbreaking," adds Dr. Nanci. "We use simple yet very efficient chemical treatments to alter metals commonly used in the operating room. This innovative approach may ultimately hold the key to developing intelligent materials that are not only easily accepted by the human body but that can actively respond to the surrounding biological environment."

About the study:
The article "Nanoscale Oxidative Patterning of Metallic Surfaces to Modulate Cell Activity and Fate" was published in Nano Letters and was authored by Antonio Nanci (Université de Montreal), Fiorenzo Vetrone (Université de Montreal and INRS-EMT), Fabio Variola (Université de Montreal and INRS-EMT), Paulo Tambasco de Oliveira (Universidade de São Paulo), Sylvia Francis Zalzal (Université de Montreal), Ji-Hyun Yi (Université de Montreal), Johannes Sam (Université de Montreal), Karina F. Bombonato-Prado (Universide de São Paulo), Andranik Sarkissian (Plasmionique Inc. Varennes), Dmitrii F. Perepichka (McGill University), Federico Rosei (INRS-EMT) and James D. Wuest (Université de Montreal).

Partners in research:

This study was funded by the Canadian Institutes of Health Research, the Natural Science and Engineering Research Council of Canada, the Canada Foundation for Innovation, the Fonds québécois de la recherche sur la nature et les technologies, the São Paulo State Research Foundation and the Canadian Bureau for International Education.

####

For more information, please click here

Contacts:
Sylvain-Jacques Desjardins
International press attaché
Université de Montréal
Telephone: 514-343-7593

Copyright © University of Montreal

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Dental

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project