Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The gold standard: Biodesign Institute researchers use nanoparticles to make 3-D DNA nanotubes

5-nm size gold nanoparticles wrap around the perimeter of a DNA nanotube in a spiral pattern. The 3-D structures have been recreated from cryoelectron tomographic imaging.
5-nm size gold nanoparticles wrap around the perimeter of a DNA nanotube in a spiral pattern. The 3-D structures have been recreated from cryoelectron tomographic imaging.

Abstract:
DNA nanotubes may soon find their way into a new generation of ultra-tiny electronic and biomedical innovations

The gold standard: Biodesign Institute researchers use nanoparticles to make 3-D DNA nanotubes

Tempe, AZ | Posted on January 1st, 2009

Arizona State University researchers Hao Yan and Yan Liu imagine and assemble intricate structures on a scale almost unfathomably small. Their medium is the double-helical DNA molecule, a versatile building material offering near limitless construction potential.

In the January 2, 2009 issue of Science, Yan and Liu, researchers at ASU's Biodesign Institute and faculty in the Department of Chemistry and Biochemistry, reveal for the first time the three-dimensional character of DNA nanotubules, rings and spirals, each a few hundred thousandths the diameter of a human hair. These DNA nanotubes and other synthetic nanostructures may soon find their way into a new generation of ultra-tiny electronic and biomedical innovations.

Yan and Liu are working in the rapidly proliferating field of structural DNA nanotechnology. By copying a page from nature's guidebook, they capitalize on the DNA molecule's remarkable properties of self-assembly. When ribbonlike strands of the molecule are brought together, they fasten to each other like strips of Velcro, according to simple rules governing the pairing of their four chemical bases, (labeled A, C, T and G). From this meager alphabet, nature has wrung a mind-bending multiplicity of forms. DNA accomplishes this through the cellular synthesis of structural proteins, coded for by specific sequences of the bases. Such proteins are fundamental constituents of living matter, forming cell walls, vessels, tissues and organs. But DNA itself can also form stable architectural structures, and may be artificially cajoled into doing so.

In his research, Yan has been much inspired by nanoscale ingenuity in the natural world: "Unicellular creatures like oceanic diatoms," he points out, "contain self-assembled protein architectures." These diverse forms of enormous delicacy and organismic practicality are frequently the result of the orchestrated self-assembly of both organic and inorganic material.

Scientists in the field of structural DNA nanotechnology, including Dr. Yan's team, have previously demonstrated that pre-fab DNA elements could be induced to self-assemble, forming useful nanostructural platforms or "tiles." Such tiles are able to snap together—with jigsaw puzzle-piece specificity—through base pairing, forming larger arrays.

Yan and Liu's work in Science responds to one of the fundamental challenges in nanotechnology and materials science, the construction of molecular-level forms in three dimensions. To do so, the team uses gold nanoparticles, which can be placed on single-stranded DNA, compelling these flexible molecular tile arrays to bend away from the nanoparticles, curling into closed loops or forming spring-like spirals or nested rings, roughly 30 to 180 nanometers in diameter.

The gold nanoparticles, which coerce DNA strands to arc back on themselves, produce a force known as "steric hindrance," whose magnitude depends on the size of particle used. Using this steric hindrance, Yan and Liu have shown for the first time that DNA nanotubules can be specifically directed to curl into closed rings with high yield.

When 5 nanometer gold particles were used, a milder steric hindrance directed the DNA tiles to curl up and join complementary neighboring segments, often forming spirals of varying diameter in addition to closed rings. A 10 nanometer gold particle however, exerted greater steric hindrance, directing a more tightly constrained curling which, produced mostly closed tubules. Yan stresses that the particle not only participates in the self-assembly process as the directed material, but also as an active agent, inducing and guiding formation of the nanotube.

With the assistance of Anchi Cheng and Jonanthan Brownell at the Scripps Research Institute, they have used an imaging technique known as electron cryotomography to provide the first glimpses of the elusive 3-D architecture of DNA nanotubules. "You quickly freeze the sample in vitreous ice," he explains, describing the process. "This will preserve the native conformation of the structure." Subsequent imaging at various tilted angles allows the reconstruction of the three-dimensional nanostructure, with the gold particles providing enough electron density for crisp visualization. (see movies)

DNA nanotubules will soon be ready to join their carbon nanotube cousins, providing flexible, resilient and manipulatable structures at the molecular level. Extending control over 3-D architectures will lay the foundation for future applications in photometry, photovoltaics, touch screen and flexible displays, as well as for far-reaching biomedical advancements.

"The ability to build three-dimensional structures through self-assembly is really exciting, " Yan says. "It's massively parallel. You can simultaneously produce millions or trillions of copies."

Yan and Liu believe that controlled tubular nanostructures bearing nanoparticles may be applied to the design of electrical channels for cell-cell communication or used in the construction of various nanoelectrical devices.

####

About Arizona State University
The Biodesign Institute at Arizona State University pursues research to create personalized medical diagnostics and treatments, outpace infectious disease, clean the environment, develop alternative energy sources, and secure a safer world. Using a team approach that fuses the biosciences with nanoscale engineering and advanced computing, the Biodesign Institute collaborates with academic, industrial and governmental organizations globally to accelerate these discoveries to market. For more information, go to: www.biodesign.asu.edu

For more information, please click here

Contacts:
Joe Caspermeyer

480-313-2010

Written by Richard Harth
Science Writer
Biodesign Institute,
Arizona State University

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

VIDEO: 5-nm size gold nanoparticles wrap around the perimeter of a DNA nanotube in a spiral pattern.

VIDEO: In this DNA nanotube configuration, again using 5-nm size gold nanoparticles, the nanoparticles form stacked rings around the DNA.

VIDEO: Using 10-nm-size gold nanoparticles, the DNA nanotubes form a split branch structure, with both the spiral tube splitting into two smaller stacked rings.

Related News Press

News and information

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Videos/Movies

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Novel nanoparticle made of common mineral may help keep tumor growth at bay February 4th, 2016

New invention revolutionizes heat transport February 1st, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Chip Technology

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanomedicine

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Nanoelectronics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Discoveries

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Nanobiotechnology

Chemical cages: New technique advances synthetic biology February 10th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic