Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Viruses, start your engines!: Researchers find what drives one of nature's powerful, nanoscale motors

Abstract:
Peering at structures only atoms across, researchers have identified the clockwork that drives a powerful virus nanomotor.

Because of the motor's strength--to scale, twice that of an automobile--the new findings could inspire engineers designing sophisticated nanomachines. In addition, because a number of virus types may possess a similar motor, including the virus that causes herpes, the results may also assist pharmaceutical companies developing methods to sabotage virus machinery.

Viruses, start your engines!: Researchers find what drives one of nature's powerful, nanoscale motors

Arlington, VA | Posted on December 29th, 2008

Researchers from Purdue University in West Lafayette, Ind., and the Catholic University of America in Washington, D.C., collaborated on the study that appears in the Dec. 26, 2008, issue of the journal Cell.

"The discovery of how this virus motor functions represents a significant milestone in the investigation of viral processes," says David Rockcliffe, the program director who oversees a National Science Foundation (NSF) grant that partly funded the research. "This research is a breakthrough that not only may lead to the development of a means of arresting harmful infections, but it also points to possible ways in which nano-devices could be fashioned,"

The virus in the study, called T4, is not a common scourge of people, but its host is: the bacterium Escherichia coli (E. coli). Purdue researchers studied the virus structures, such as the motor, while the Catholic University researchers isolated the virus components and performed biochemical analyses.

"T4 is what's called a 'tailed virus'," says Purdue biologist Michael Rossmann, one of the lead researchers for the study. "It is actually one of the most common types of organisms in the oceans of the world. There are many different, tailed, bacteria viruses--or phages--and all of these phages have such a motor for packaging their DNA, their genome, into their pre-formed heads."

The virus is well known to scientists. "T4 has rich history going back to 1940s when the original genetic tools to understand virus assembly were developed," adds biologist Venigalla Rao of Catholic University, also a lead researcher on the study. "T4 has been an important model system to tease out the details of basic mechanisms by which viruses assemble into infectious particles."

For the recent study, analyses involved two sophisticated instruments capable of studying structures at the nanometer (billionth of a meter) scale. One of the techniques, x-ray crystallography, showed the ordered arrays of atoms in the various structures, while another, called cryo-electron microscopy, let the researchers study the broader shape of the structures without the need for coating or drying out the specimens.

Having already determined the structures of a number of other viral components and how they self-assemble, in this study the researchers focused their attention on the small motor that some viruses use to package DNA into their "heads", protein shells also called capsids.

Not all viruses have a motor such as the one found in the T4 virus, but some viruses that cause human diseases posses molecular motors with similar functions, and likely have similar structures. T4 uses its motor to pack about 171,000 basepairs of genetic information to near-crystalline density within its 120 nanometer by 86 nanometer capsid.

The researchers found that the motor is located at the intersection of the capsid and the virus "tail" and is made of a circular array of proteins called gene product 17 (gp17). Five, two-part, gp17 proteins combine to form a pair of conjoined rings, arrayed so that their upper segments form an upper ring and their lower segments form a lower ring.

As a T4 virus assembles itself, the lower ring of the motor structure attaches to a strand of DNA, while the upper ring attaches to a capsid. The upper and lower rings have opposite charges, which allow the motor to contract and release, alternately tugging at the DNA like a ring of hands pulling on a rope.

The process draws the DNA strand upwards into the capsid where it is protected from damage, enabling the virus to survive and reproduce. After the DNA is inside the capsid, the motor falls off, and a virus tail attaches to the capsid.

Until now, researchers did not know how T4, or any other virus, accomplished the DNA packaging. According to Rao, "Since the assembly of herpes viruses closely resembles that of T4, this research might provide insights on how to manipulate herpes infections."

While many questions remain, adds Rossmann, the virus may lend itself to a variety for medical purposes. One example Rossmann cites is as a potential new weapon to fight dangerous microbes.

"Bacteriophages like T4 are a completely alternative way of dealing with unwanted bacteria. The virus can kill bacteria in its process of reproduction, so use of such viruses as antibiotics has been a long looked-for alternative to overcome the problems which we now have with antibiotics."

####

For more information, please click here

Contacts:
Joshua A. Chamot

703-292-7730

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Molecular Machines

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Discoveries

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE