Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New research to exploit world's thinnest material

Abstract:
The Universities of Exeter and Bath (UK) can today reveal their plans for a new world-leading research centre to explore and exploit the properties of the thinnest material in nature. The two universities have won a 5 million Science and Innovation Award from the Engineering and Physical Sciences Research Council (EPSRC) to create the Centre of Graphene Science.

New research to exploit world's thinnest material

UK | Posted on December 24th, 2008

A form of carbon, graphene was discovered in 2004 and is the thinnest known conducting material. It is a single layer of graphite which is just one atom thick and has unique mechanical, electrical and optical properties. Scientists believe it could play a major role in the future of computing because it has the potential to speed-up the transfer of information. It can become the basis of a new generation of devices, from ultra-fast transistors to chemical and biological sensors with ultimate (single-molecule) sensitivity. These devices will find a wide range of applications, from nano-electronics to medicine and healthcare.

Based in Exeter and Bath, the centre will act as an international focus for graphene science, supporting academic research and forging links with industry. Seven new academic positions will be created and the centre's laboratories will feature state-of-the-art equipment.

University of Exeter physicist Professor Alexander Savchenko said: "Graphene is an exciting material for fundamental research. It has many properties which make it stand out from all semiconductor layers studied and widely used so far. Working with engineering and biosciences colleagues, we want not only to understand its unique properties but find the ways of using them in practical devices for everyday use. We are delighted that Exeter will be playing such a major role in the emerging field of graphene science".

Over the next three years, the University of Exeter is investing 80 million in science. Its investment is focused on five themes, one of which is Functional Materials where graphene is a new and very important direction. The funding for this Centre marks a major step in the University achieving its ambitions to lead in materials research.

University of Bath Professor Simon Bending said: "This is a really important award which brings the combined research expertise of Bath and Exeter universities to bear on the science of graphene, one of the most remarkable materials to have been discovered in recent decades. Graphene could have a huge range of exciting applications and is even a strong candidate for replacing silicon in microelectronics. Who would have guessed that microprocessors could one day be made from the graphite found in everyday pencils!"

This is one of four five-year grants totalling 20m being awarded to the Universities of Bath, Edinburgh, Exeter, Heriot-Watt, Lancaster, Manchester and Strathclyde as a result of the EPSRC 2008 Science and Innovation Awards.

Lesley Thompson, EPSRC Director of Research, said: "These awards are part of our continuing work to ensure Britain has the necessary leadership and resources in breakthrough areas of scientific research. These new centres will have the critical mass to make major research progress, stimulate research in the UK and international community and, where appropriate, to encourage innovation in UK business and industry."

The EPSRC is funding the four programmes with supporting finance from the Higher Education Funding Council for England (HEFCE), the Scottish Funding Council (SFC) and the Biotechnology and Biological Sciences Research Council (BBSRC).

David Sweeney, Director of Research, Innovation and Skills, HEFCE, added: "HEFCE is pleased to partner the EPSRC in this round of the Science and Innovation Awards focussing on emerging areas of expertise in science and engineering. We are committed to building capacity in excellent research and these awards will play their part in securing the UK's success in this area of leading edge scientific activity."

####

For more information, please click here

Contacts:
Sarah Hoyle

44-139-226-2062

Copyright © University of Exeter

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Openings/New facilities/Groundbreaking/Expansion

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nexeon Establishes Base in Asia October 11th, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Albertan Science Lab Opens in India May 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Chip Technology

A nano-roundabout for light December 10th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Materials/Metamaterials

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project