Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Make Breakthrough in the Production of Double-Walled Carbon Nanotubes

Above is a visualization of the structure of carbon nanotubes. Double-sided carbon nanotubes are highly prized for their use in solar cells and other applications, but until now, creating a supply of just double-sided carbon nanotubes -- instead of a mix of single- and multi-sided ones--was a challenge. A team of researchers at Northwestern University has announced a breakthrough technique that allows the double-sided tubes to be efficiently separated from the other types.

Credit: Courtesy of Mark Hersam, Northwestern University
Above is a visualization of the structure of carbon nanotubes. Double-sided carbon nanotubes are highly prized for their use in solar cells and other applications, but until now, creating a supply of just double-sided carbon nanotubes -- instead of a mix of single- and multi-sided ones--was a challenge. A team of researchers at Northwestern University has announced a breakthrough technique that allows the double-sided tubes to be efficiently separated from the other types.

Credit: Courtesy of Mark Hersam, Northwestern University

Abstract:
Northwestern University team develops new method to reliably produce and sort out double-walled carbon nanotubes; discovery could lower the cost of this dynamic material

Researchers Make Breakthrough in the Production of Double-Walled Carbon Nanotubes

Arlington, VA | Posted on December 14th, 2008

In recent years, the possible applications for double-walled carbon nanotubes have excited scientists and engineers, particularly those working on developing renewable energy technologies. These tiny tubes, just two carbon atoms thick, are thin enough to be transparent, yet can still conduct electricity. This combination makes them well-suited for advanced solar panels, sensors and a host of other applications.

Up until now, the problem with double-walled carbon nanotubes has been being able to produce a homogeneous supply of them. When double-walled carbon nanotubes are synthesized, the process also creates many of the single- and multi-walled variety. Given their small size, sorting the valuable double-walled tubes from the other types has posed a real challenge.

In a paper published today in the online edition of the journal Nature Nanotechnology, two researchers from Northwestern University outline a new process for efficiently gathering up these coveted double-walled carbon nanotubes. For more information on the team's work, go to www.northwestern.edu/newscenter/stories/2008/12/nanotube.html.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Dana W. Cruikshank
NSF
(703) 292-8070


Megan Fellman
Northwestern University
(847) 491-3115


Program Contacts
LaVerne D. Hess
NSF
(703) 292-4937

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View an interview with Mark C. Hersam, professor of materials science and engineering at Northwestern University.

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project