Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'The photon force is with us': Harnessing light to drive nanomachines

Photonic circuit in which optical force is harnessed to drive nanomechanics (inset)

Credit: Tang/Yale
Photonic circuit in which optical force is harnessed to drive nanomechanics (inset)

Credit: Tang/Yale

Abstract:
Science fiction writers have long envisioned sailing a spacecraft by the optical force of the sun's light. But, the forces of sunlight are too weak to fill even the oversized sails that have been tried. Now a team led by researchers at the Yale School of Engineering & Applied Science has shown that the force of light indeed can be harnessed to drive machines when the process is scaled to nano-proportions

'The photon force is with us': Harnessing light to drive nanomachines

New Haven, CT | Posted on November 26th, 2008

Their work opens the door to a new class of semiconductor devices that are operated by the force of light. They envision a future where this process powers quantum information processing and sensing devices, as well as telecommunications that run at ultra-high speed and consume little power.

The research, appearing in the November 27 issue of Nature, demonstrates a marriage of two emerging fields of research nanophotonics and nanomechanics. - which makes possible the extreme miniaturization of optics and mechanics on a silicon chip.

The energy of light has been harnessed and used in many ways. The "force" of light is different it is a push or a pull action that causes something to move.

"While the force of light is far too weak for us to feel in everyday life, we have found that it can be harnessed and used at the nanoscale," said team leader Hong Tang, assistant professor at Yale. "Our work demonstrates the advantage of using nano-objects as "targets" for the force of light using devices that are a billion-billion times smaller than a space sail, and that match the size of today's typical transistors."

Until now light has only been used to maneuver single tiny objects with a focused laser beam a technique called "optical tweezers." Postdoctoral scientist and lead author, Mo Li noted, "Instead of moving particles with light, now we integrate everything on a chip and move a semiconductor device."

"When researchers talk about optical forces, they are generally referring to the radiation pressure light applies in the direction of the flow of light," said Tang. "The new force we have investigated actually kicks out to the side of that light flow."

While this new optical force was predicted by several theories, the proof required state-of-the-art nanophotonics to confine light with ultra-high intensity within nanoscale photonic wires. The researchers showed that when the concentrated light was guided through a nanoscale mechanical device, significant light force could be generated enough, in fact, to operate nanoscale machinery on a silicon chip.

The light force was routed in much the same way electronic wires are laid out on today's large scale integrated circuits. Because light intensity is much higher when it is guided at the nanoscale, they were able to exploit the force. "We calculate that the illumination we harness is a million times stronger than direct sunlight," adds Wolfram Pernice, a Humboldt postdoctoral fellow with Tang.

"We create hundreds of devices on a single chip, and all of them work," says Tang, who attributes this success to a great optical I/O device design provided by their collaborators at the University of Washington.

It took more than 60 years to progress from the first transistors to the speed and power of today's computers. Creating devices that run solely on light rather than electronics will now begin a similar process of development, according to the authors.

"While this development has brought us a new device concept and a giant step forward in speed, the next developments will be in improving the mechanical aspects of the system. But," says Tang, "the photon force is with us."

Tang's team at Yale also included graduate student Chi Xiong. Collaborators at University of Washington were Thomas Baehr-Jones and Michael Hochberg. Funding in support of the project came from the National Science Foundation, the Air Force Office of Scientific Research and the Alexander von Humboldt post-doctoral fellowship program.

Citation: Nature (November 27, 2008)

####

For more information, please click here

Contacts:
Janet Rettig Emanuel

203-432-2157

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Hong Tang

Yale School of Engineering & Applied Science

Related News Press

News and information

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Molecular Machines

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Revealing the fluctuations of flexible DNA in 3-D: First-of-their-kind images by Berkeley Lab-led research team could aid in use of DNA to build nanoscale devices March 31st, 2016

Molecular Nanotechnology

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines March 22nd, 2016

Discoveries

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Announcements

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Photonics/Optics/Lasers

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic