Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Detecting tiny twists with a nanomachine

Abstract:
Nanoscale device may reveal spin-dependent fundamental forces and provide new methods of characterizing torque-generating molecules and DNA strands

Detecting tiny twists with a nanomachine

Boston, MA | Posted on November 5th, 2008

Researchers at Boston University working with collaborators in Germany, France and Korea have developed a nanoscale torsion resonator that measures miniscule amounts of twisting or torque in a metallic nanowire. This device, the size of a speck of dust, might enable measurements of the untwisting of DNA and have applications in spintronics, fundamental physics, chemistry and biology.

Spin-induced torque is central to understanding experiments, from the measurement of angular momentum of photons to the measurement of the gyromagnetic factor of metals and a very miniaturized - about 6 microns -- version of a gyroscope that measures the torques produced by electrons changing their spin states. It can be used to uncover new spin-dependent fundamental forces in particle physics, according to Raj Mohanty, Boston University Associate Professor of Physics.

"This is perhaps the most sensitive torque measurement every reported," said Mohanty. "The size of the torque measured by this experiment is smaller than the typical torque produced by the untwisting of a doubly-stranded DNA."

In a just released paper in Nature Nanotechnology entitled "Nanomechanical detection of itinerant electron spin flip," Mohanty and his research team developed a highly sensitive way to directly measure torque using microelectronic mechanical systems with spin electronics. Their approach was to detect and control spin-flip torque -- a phenomenon that occurs in a metallic nanowire, that is half ferromagnetic and the other is nonmagnetic. The spins of itinerant electrons are "flipped" at the interface between the two regions to produce a torque.

The team developed a microscopic spin-torsion device fabricated by electron beam lithography and nanomachining that mechanically measures the changes in spin states in a magnetic field. This device was operated at one tenth of a degree close to absolute zero.

The team has been working on demonstrating the opposite effect. Under the application of an external torque spin-up and spin-down electrons can be separated to two physically distinct locations, creating a spin battery. This is similar to a conventional charge battery with positive and negative polarities. When connected with an electrical path, electricity flows from one side to the other. But instead of electric current, the flow in the spin battery involves the spin - which can be used to store and manipulate information, the basis of an emerging technology called spintronics.

"The measurements with a nanoscale torsion resonator will be useful in uncovering new fundamental forces and, in theory, for characterizing torque producing molecules and DNA." said Mohanty.

Mohanty's research collaborators for the paper are Guiti Zolfagharkhani, then a graduate student at Boston University's Department of Physics, Alexi Gaidarzhy then a graduate student of BU's Department of Mechanical and Aerospace Engineering, Pascal Degiovanni of the Ecole Normale Superieure and Universite de Lyon in France, Stefan Kettemann of Jacobs University in Bremen, Germany and Peter Fulde at the Asia Pacific Center for Theoretical Physics in Namgu Pohang, Korea.

The research was supported by National Science Foundation

####

About Boston University
Founded in 1839, Boston University is an internationally recognized institution of higher education and research. With more than 30,000 students, it is the fourth largest independent university in the United States. BU consists of 17 colleges and schools along with a number of multi-disciplinary centers and institutes which are central to the school's research and teaching mission.

For more information, please click here

Contacts:
Ronald Rosenberg

617-358-1240

Copyright © Boston University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Physics

Doubling down on Schrödinger's cat May 27th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

How light is detected affects the atom that emits it: An experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection May 15th, 2016

Chemistry

Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time May 19th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Molecular Machines

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Revealing the fluctuations of flexible DNA in 3-D: First-of-their-kind images by Berkeley Lab-led research team could aid in use of DNA to build nanoscale devices March 31st, 2016

Molecular Nanotechnology

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines March 22nd, 2016

Spintronics

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Spin lifetime anisotropy of graphene is much weaker than previously reported May 10th, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic