Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Detecting tiny twists with a nanomachine

Abstract:
Nanoscale device may reveal spin-dependent fundamental forces and provide new methods of characterizing torque-generating molecules and DNA strands

Detecting tiny twists with a nanomachine

Boston, MA | Posted on November 5th, 2008

Researchers at Boston University working with collaborators in Germany, France and Korea have developed a nanoscale torsion resonator that measures miniscule amounts of twisting or torque in a metallic nanowire. This device, the size of a speck of dust, might enable measurements of the untwisting of DNA and have applications in spintronics, fundamental physics, chemistry and biology.

Spin-induced torque is central to understanding experiments, from the measurement of angular momentum of photons to the measurement of the gyromagnetic factor of metals and a very miniaturized - about 6 microns -- version of a gyroscope that measures the torques produced by electrons changing their spin states. It can be used to uncover new spin-dependent fundamental forces in particle physics, according to Raj Mohanty, Boston University Associate Professor of Physics.

"This is perhaps the most sensitive torque measurement every reported," said Mohanty. "The size of the torque measured by this experiment is smaller than the typical torque produced by the untwisting of a doubly-stranded DNA."

In a just released paper in Nature Nanotechnology entitled "Nanomechanical detection of itinerant electron spin flip," Mohanty and his research team developed a highly sensitive way to directly measure torque using microelectronic mechanical systems with spin electronics. Their approach was to detect and control spin-flip torque -- a phenomenon that occurs in a metallic nanowire, that is half ferromagnetic and the other is nonmagnetic. The spins of itinerant electrons are "flipped" at the interface between the two regions to produce a torque.

The team developed a microscopic spin-torsion device fabricated by electron beam lithography and nanomachining that mechanically measures the changes in spin states in a magnetic field. This device was operated at one tenth of a degree close to absolute zero.

The team has been working on demonstrating the opposite effect. Under the application of an external torque spin-up and spin-down electrons can be separated to two physically distinct locations, creating a spin battery. This is similar to a conventional charge battery with positive and negative polarities. When connected with an electrical path, electricity flows from one side to the other. But instead of electric current, the flow in the spin battery involves the spin - which can be used to store and manipulate information, the basis of an emerging technology called spintronics.

"The measurements with a nanoscale torsion resonator will be useful in uncovering new fundamental forces and, in theory, for characterizing torque producing molecules and DNA." said Mohanty.

Mohanty's research collaborators for the paper are Guiti Zolfagharkhani, then a graduate student at Boston University's Department of Physics, Alexi Gaidarzhy then a graduate student of BU's Department of Mechanical and Aerospace Engineering, Pascal Degiovanni of the Ecole Normale Superieure and Universite de Lyon in France, Stefan Kettemann of Jacobs University in Bremen, Germany and Peter Fulde at the Asia Pacific Center for Theoretical Physics in Namgu Pohang, Korea.

The research was supported by National Science Foundation

####

About Boston University
Founded in 1839, Boston University is an internationally recognized institution of higher education and research. With more than 30,000 students, it is the fourth largest independent university in the United States. BU consists of 17 colleges and schools along with a number of multi-disciplinary centers and institutes which are central to the school's research and teaching mission.

For more information, please click here

Contacts:
Ronald Rosenberg

617-358-1240

Copyright © Boston University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Physics

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

Chemistry

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Laser-burned graphene gains metallic powers: Rice University scientists find possible replacement for platinum as catalyst August 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Molecular Machines

Using DNA origami to build nanodevices of the future September 1st, 2015

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Molecular Nanotechnology

Using DNA origami to build nanodevices of the future September 1st, 2015

Sandcastles inspire new nanoparticle binding technique August 5th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Rare form: Novel structures built from DNA emerge July 20th, 2015

Spintronics

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Spintronics just got faster July 20th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Discoveries

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Announcements

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Waste coffee used as fuel storage: Scientists have developed a simple process to treat waste coffee grounds to allow them to store methane September 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic