Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Mcgovern Institute funds collaborative neurotechnology projects

Abstract:
The McGovern Institute for Brain Research has announced six new funding awards to develop technologies aimed at accelerating neuroscience research and developing new therapeutic approaches for brain disorders. The new projects are on themes ranging from brain-machine interfaces to new genetic tools and brain imaging methods.

Mcgovern Institute funds collaborative neurotechnology projects

Cambridge, MA | Posted on October 28th, 2008

The awards are part of the McGovern Institute Neurotechnology (MINT) program, established in 2006 to promote collaborations between neuroscientists and researchers from other disciplines within and beyond MIT. "Neuroscience has always been driven by new technologies," explained Charles Jennings, the MINT program director. "We want to take advantage of the extraordinary range of technological expertise at MIT to develop new methods that could transform the field."

The MINT awards typically provide up to $100,000 for one year of seed funding to test innovative ideas that traditional funding sources rarely support, and to determine if they are worth pursuing further.

To date, MINT has supported 11 projects, involving faculty members from seven MIT departments as well as a local startup company. "We're on the lookout for new ideas and we'd be delighted to hear from anyone who wants to work with us," Jennings said.

Two of the newly funded projects involve developing electrodes for long-term recordings in the brain. These have potential applications for studies of learning, and eventually for neuroprosthetic devices that could, for example, allow a paralyzed patient to control a robotic arm or a computer through mental activity. One of the new projects will explore the use of carbon nanotubes as a biocompatible material for electrode fabrication. Another will develop biodegradable coatings for thin flexible polymer electrodes to make them easier to insert into the brain.

Neuroscientists often face a challenge in analyzing the large datasets produced by human brain imaging studies. Two MINT projects will apply new computational approaches to fMRI data from visual recognition studies. If successful, these methods could reveal new insights into the brain's functional organization. They could also advance the study of brain disorders, for example by identifying relationships between brain activity, genetics and clinical diagnostic categories.

A fifth project will use optical methods to manipulate cell signaling pathways in vivo, with potential use in identifying targets for drug development. In the sixth project, the collaborators will develop a 3-D laser-based method for dissecting single neurons from brain tissue. The ability to analyze gene expression and other biochemical processes in single cells is especially important in the brain, where cells of many different types are closely intermingled.

Further details of these and previous MINT projects can be found at
web.mit.edu/mcgovern/html/News_and_Publications/2008_seed.shtml.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
news office
room 11-400
77 massachusetts avenue
cambridge, ma 02139-4307 617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Brain-Computer Interfaces

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Optical magnetic field sensor can detect signals from the nervous system July 19th, 2016

A 'bridge' of carbon between nerve tissues: A high-tech 'sponge' connects neurons in vitro (and is biocompatible in vivo) July 18th, 2016

Scientists move closer to developing therapeutic window to the brain: Transparent skull implant created by UCR-led team will allow doctors to deliver life-saving laser treatments to patients with brain disorders July 13th, 2016

Academic/Education

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Nanomedicine

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Announcements

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic