Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoscale Dimensioning Is Fast, Cheap with New NIST Optical Technique

This schematic (left) shows how a TSOM image is acquired. Using an optical microscope, several images of a 60 nanometer gold particle sample (shown in red) are taken at different focal positions and stacked together. The computer-created image on the right shows the resultant TSOM image.

Credit: NIST
This schematic (left) shows how a TSOM image is acquired. Using an optical microscope, several images of a 60 nanometer gold particle sample (shown in red) are taken at different focal positions and stacked together. The computer-created image on the right shows the resultant TSOM image.

Credit: NIST

Abstract:
A novel technique* under development at the National Institute of Standards and Technology (NIST) uses a relatively inexpensive optical microscope to quickly and cheaply analyze nanoscale dimensions with nanoscale measurement sensitivity. Termed "Through-focus Scanning Optical Microscope" (TSOM) imaging, the technique has potential applications in nanomanufacturing, semiconductor process control and biotechnology.

Nanoscale Dimensioning Is Fast, Cheap with New NIST Optical Technique

GAITHERSBURG, MD | Posted on October 28th, 2008

Optical microscopes are not widely considered for checking nanoscale (below 100 nanometers) dimensions because of the limitation imposed by wavelength of light—you can't get a precise image with a probe three times the object's size. NIST researcher Ravikiran Attota gets around this, paradoxically, by considering lots of "bad" (out-of-focus) images. "This imaging uses a set of blurry, out-of-focus optical images for nanometer dimensional measurement sensitivity," he says. Instead of repeatedly focusing on a sample to acquire one best image, the new technique captures a series of images with an optical microscope at different focal positions and stacks them one on top of the other to create the TSOM image. A computer program Attota developed analyzes the image.

While Attota believes this simple technique can be used in a variety of applications, he has worked with two. The TSOM image can compare two nanoscale objects such as silicon lines on an integrated circuit. The software "subtracts" one image from the other. This enables sensitivity to dimensional differences at the nanoscale—line height, width or side-wall angle. Each type of difference generates a distinct signal.

TSOM has also been theoretically evaluated in another quality control application. Medical researchers are studying the use of gold nanoparticles to deliver advanced pharmaceuticals to specific locations within the human body. Perfect size will be critical. To address this application, a TSOM image of a gold nanoparticle can be taken and compared to a library of simulated images to obtain "best-match" images with the intent of determining if each nanoparticle passes or fails.

This new imaging technology requires a research-quality optical microscope, a camera and a microscope stage that can move at preset distances. "The setup is easily under $50,000, which is much less expensive than electron or probe microscopes currently used for measuring materials at the nanoscale," Attota explains. "This method is another approach to extend the range of optical microscopy from microscale to nanoscale dimensional analysis." So far, sensitivity to a 3 nm difference in line widths has been demonstrated in the laboratory.

* R. Attota, T.A. Germer and R.M. Silver. Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis, Optics Letters 33, 1990 (2008).

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Evelyn Brown

(301) 975-5661

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Hiden Release New Gas Analysis Catalogue August 21st, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Imaging

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Discoveries

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Announcements

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Tools

Hiden Release New Gas Analysis Catalogue August 21st, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE