Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Playing Pinball with Atoms

Scientists are reporting construction and testing of a nanotech device that responds to on-off stimuli and resembles flippers on a pinball machine.  
Credit: Harold J. W. Zandvliet
Scientists are reporting construction and testing of a nanotech device that responds to on-off stimuli and resembles flippers on a pinball machine.  
Credit: Harold J. W. Zandvliet

Abstract:
With nanotechnology yielding a burgeoning menagerie of microscopic pumps, motors, and other machines for potential use in medicine and industry, here is one good question: How will humans turn those devices on and off? In an advance toward giving humans that control, scientists in The Netherlands are reporting use of an external electrical signal to control an atomic-scale mechanical device that looks like the flippers on a pinball machine. Their report is scheduled for the Oct. 8 issue of ACS' monthly journal Nano Letters.

Playing Pinball with Atoms

Enschede, The Netherlands | Posted on October 1st, 2008

In the study, Harold J. W. Zandvliet and colleagues point out that efforts to build ever-smaller mechanical devices have made scientists recognize the difficulty of exerting control over these nanomachines, which are too tiny for any conventional on-off-switch. They describe construction and successful testing of a device, "grown" on a wafer of germanium crystal, that responds to on-off stimuli.

Researchers say the device — so tiny that billions would fit on the head of a pin — resembles the arms or flippers on a pinball machine. The signals for the arms to move back and forth come from the tip of a scanning tunneling microscope. "By precisely controlling the tip current and distance, we make two atom pairs behave like the flippers on an atomic-sized pinball machine," they state. "Our observations prove unambiguously that it is possible to control an atomic scale mechanical device using a simple electrical signal. A better understanding of similar devices can shed light on the future possibilities and opportunities for the application of atomic-scale devices." — AD

####

For more information, please click here

Contacts:
Harold J. W. Zandvliet, Ph.D.
University of Twente
MESA+ Institute for Nanotechnology.
Enschede, The Netherlands
Phone: 31(0) 53 489 3091
Fax: 31(0)53 489 1101

Copyright © American Chemical Society (ACS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The random raman laser: A new light source for the microcosmos May 4th, 2015

Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics May 4th, 2015

Arrowhead to Report Fiscal 2015 Second Quarter Financial Results May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Molecular Machines

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Molecular Nanotechnology

Feynman Prize Winners Announced! April 26th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Discoveries

The random raman laser: A new light source for the microcosmos May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Announcements

Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics May 4th, 2015

Arrowhead to Report Fiscal 2015 Second Quarter Financial Results May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project