Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Playing Pinball with Atoms

Scientists are reporting construction and testing of a nanotech device that responds to on-off stimuli and resembles flippers on a pinball machine.  
Credit: Harold J. W. Zandvliet
Scientists are reporting construction and testing of a nanotech device that responds to on-off stimuli and resembles flippers on a pinball machine.  
Credit: Harold J. W. Zandvliet

Abstract:
With nanotechnology yielding a burgeoning menagerie of microscopic pumps, motors, and other machines for potential use in medicine and industry, here is one good question: How will humans turn those devices on and off? In an advance toward giving humans that control, scientists in The Netherlands are reporting use of an external electrical signal to control an atomic-scale mechanical device that looks like the flippers on a pinball machine. Their report is scheduled for the Oct. 8 issue of ACS' monthly journal Nano Letters.

Playing Pinball with Atoms

Enschede, The Netherlands | Posted on October 1st, 2008

In the study, Harold J. W. Zandvliet and colleagues point out that efforts to build ever-smaller mechanical devices have made scientists recognize the difficulty of exerting control over these nanomachines, which are too tiny for any conventional on-off-switch. They describe construction and successful testing of a device, "grown" on a wafer of germanium crystal, that responds to on-off stimuli.

Researchers say the device — so tiny that billions would fit on the head of a pin — resembles the arms or flippers on a pinball machine. The signals for the arms to move back and forth come from the tip of a scanning tunneling microscope. "By precisely controlling the tip current and distance, we make two atom pairs behave like the flippers on an atomic-sized pinball machine," they state. "Our observations prove unambiguously that it is possible to control an atomic scale mechanical device using a simple electrical signal. A better understanding of similar devices can shed light on the future possibilities and opportunities for the application of atomic-scale devices." — AD

####

For more information, please click here

Contacts:
Harold J. W. Zandvliet, Ph.D.
University of Twente
MESA+ Institute for Nanotechnology.
Enschede, The Netherlands
Phone: 31(0) 53 489 3091
Fax: 31(0)53 489 1101

Copyright © American Chemical Society (ACS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Produces Cooling Fabrics Using Nanotechnology October 17th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Molecular Machines

How swarms of nanomachines could improve the efficiency of any machine September 28th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Measuring the nanoworld September 4th, 2018

All wired up: New molecular wires for single-molecule electronic devices August 31st, 2018

Molecular Nanotechnology

How swarms of nanomachines could improve the efficiency of any machine September 28th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Measuring the nanoworld September 4th, 2018

All wired up: New molecular wires for single-molecule electronic devices August 31st, 2018

Discoveries

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Announcements

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project