Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dual-Mode Nanoparticles Image Tumors Using MRI and PET

Abstract:
Medical imaging represents one of the most used and useful procedures in the oncologist's diagnostic toolkit, even though each of the most useful techniques—magnetic resonance imaging (MRI), computerized tomography x-ray imaging (CT), and positron emission tomography (PET) scanning—has its own set of limitations. The companies that make imaging instruments have responded by developing so-called dual-modality machines that can simultaneously perform two different types of scans. Now two reports in the scientific literature show how nanotechnology researchers have responded by creating dual-modality contrast agents for future use with these next-generation imaging devices.

Dual-Mode Nanoparticles Image Tumors Using MRI and PET

Bethesda , MD | Posted on August 15th, 2008

Both of the new reports focus on magnetic nanoparticles, which are proven MRI contrast agents and also contain the radioisotopes needed to perform PET images. Jinwoo Cheon, Ph.D., Yonsei University in Korea, and his colleagues published their paper in the journal Angewandte Chemie International Edition. Dr. Cheon is a member of the Nanomaterials for Cancer Diagnostics and Therapeutics Center for Cancer Nanotechnology Excellence at Northwestern University. Xiaoyuan Chen, Ph.D., Stanford University, and his collaborators published their results in the Journal of Nuclear Medicine. Dr. Chen is a member of the Center for Cancer Nanotechnology Excellence Focused on Therapy Response, which is based at Stanford.

Dr. Cheon's group first created a magnetic nanoparticle from manganese and iron and coated it with albumin, the most common protein in blood; this nanoparticle produces a very strong signal in an MRI. Next, the researchers added PET functionality by chemically attaching radioactive iodine to the albumin coating. They then showed the value of combining MRI and PET contrast agents in the same nanoparticle in a simple experiment that compared the spatial resolution—how small an object they could image accurately—and the sensitivity—how little they could see—of each modality when using the same dual-modality nanoparticle. The spatial resolution in the MRI was far greater than that measured in the PET image, and PET imaging was able to detect far less material.

In additional tests, the investigators used their dual-modality nanoparticle to image sentinel lymph nodes in mice. Imaging sentinel lymph nodes is an important diagnostic procedure used to check for metastasis. The investigators found that layering the MRI and PET scans, acquired simultaneously on top of each other, enabled them to unambiguously identify two different lymph nodes.

Dr. Chen's group has developed a magnetic iron oxide nanoparticle modified with two different molecules: a small peptide that targets tumors and an organic molecule that entraps radioactive elements such as copper-64. The investigators then used this dual-modality agent to image tumors in mice. These images showed that the nanoparticle was indeed targeted to tumors and that tumors took up the nanoparticles. The researchers also showed that a combined MRI/PET scan easily pinpointed tumors in the test mice.

The work from Dr. Cheon's group, which is detailed in the paper "A Hybrid Nanoparticle Probe for Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. To learn more about this initiative, go to http://nano.cancer.gov/. Investigators from Kyungpook National University in Daegu, Korea, and the Korea Institute of Radiological and Medical Sciences in Seoul also participated in this study. There is no abstract available for this paper.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:


National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View paper citation at journal’s Web site

View abstract - “PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)-Conjugated Radiolabeled Iron Oxide Nanoparticles.”

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project