Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Dual-Mode Nanoparticles Image Tumors Using MRI and PET

Abstract:
Medical imaging represents one of the most used and useful procedures in the oncologist's diagnostic toolkit, even though each of the most useful techniques—magnetic resonance imaging (MRI), computerized tomography x-ray imaging (CT), and positron emission tomography (PET) scanning—has its own set of limitations. The companies that make imaging instruments have responded by developing so-called dual-modality machines that can simultaneously perform two different types of scans. Now two reports in the scientific literature show how nanotechnology researchers have responded by creating dual-modality contrast agents for future use with these next-generation imaging devices.

Dual-Mode Nanoparticles Image Tumors Using MRI and PET

Bethesda , MD | Posted on August 15th, 2008

Both of the new reports focus on magnetic nanoparticles, which are proven MRI contrast agents and also contain the radioisotopes needed to perform PET images. Jinwoo Cheon, Ph.D., Yonsei University in Korea, and his colleagues published their paper in the journal Angewandte Chemie International Edition. Dr. Cheon is a member of the Nanomaterials for Cancer Diagnostics and Therapeutics Center for Cancer Nanotechnology Excellence at Northwestern University. Xiaoyuan Chen, Ph.D., Stanford University, and his collaborators published their results in the Journal of Nuclear Medicine. Dr. Chen is a member of the Center for Cancer Nanotechnology Excellence Focused on Therapy Response, which is based at Stanford.

Dr. Cheon's group first created a magnetic nanoparticle from manganese and iron and coated it with albumin, the most common protein in blood; this nanoparticle produces a very strong signal in an MRI. Next, the researchers added PET functionality by chemically attaching radioactive iodine to the albumin coating. They then showed the value of combining MRI and PET contrast agents in the same nanoparticle in a simple experiment that compared the spatial resolution—how small an object they could image accurately—and the sensitivity—how little they could see—of each modality when using the same dual-modality nanoparticle. The spatial resolution in the MRI was far greater than that measured in the PET image, and PET imaging was able to detect far less material.

In additional tests, the investigators used their dual-modality nanoparticle to image sentinel lymph nodes in mice. Imaging sentinel lymph nodes is an important diagnostic procedure used to check for metastasis. The investigators found that layering the MRI and PET scans, acquired simultaneously on top of each other, enabled them to unambiguously identify two different lymph nodes.

Dr. Chen's group has developed a magnetic iron oxide nanoparticle modified with two different molecules: a small peptide that targets tumors and an organic molecule that entraps radioactive elements such as copper-64. The investigators then used this dual-modality agent to image tumors in mice. These images showed that the nanoparticle was indeed targeted to tumors and that tumors took up the nanoparticles. The researchers also showed that a combined MRI/PET scan easily pinpointed tumors in the test mice.

The work from Dr. Cheon's group, which is detailed in the paper "A Hybrid Nanoparticle Probe for Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. To learn more about this initiative, go to http://nano.cancer.gov/. Investigators from Kyungpook National University in Daegu, Korea, and the Korea Institute of Radiological and Medical Sciences in Seoul also participated in this study. There is no abstract available for this paper.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:


National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View paper citation at journal’s Web site

View abstract - “PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)-Conjugated Radiolabeled Iron Oxide Nanoparticles.”

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Imaging

Industry’s First Dedicated Cryo-DualBeam System Automates Preparation of Frozen, Biological Samples: New Thermo Scientific Aquilos FIB/SEM protects sample integrity and enhances productivity for cryo-electron tomography workflow August 8th, 2017

Thermo Fisher Scientific Advances Cryo-EM Leadership to Drive Structural Biology Discoveries: New Thermo Scientific Krios G3i raises bar for performance, automation and time-to-results Breakthrough Thermo Scientific Glacios provides a cryo-EM entry path for a broader range of res August 8th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Nanomedicine

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

Discoveries

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project