Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular Hula Hoop

Abstract:
Humans have long been trying to make the dream of nanoscopic robots come true. The dream is, in fact, taking on some aspects of reality. Nanoscience has produced components for molecular-scale machines. One such device is a rotor, a movable component that rotates around an axis. Trying to observe such rotational motion on the molecular scale is an extremely difficult undertaking. Japanese researchers at the Universities of Osaka and Kyoto have now met this challenge. As Akira Harada and his team report in the journal Angewandte Chemie, they were able to get "snapshots" of individual molecular rotors caught in motion.

Molecular Hula Hoop

Hoboken, NJ | Posted on July 19th, 2008

As the subject of their study the researchers chose a rotaxane. This is a two-part molecular system: A rod-shaped molecule is threaded by a second, ring-shaped molecule like a cuff while a stopper at the end of the rod prevents the ring from coming off. The researchers attached one end of the rod to a glass support. To observe the rotational motions of the cuff around the sleeve, the scientists attached a fluorescing side chain to the cuff as a probe.

To observe the rotation of the ring around the rod, the researchers used a microscopic technique called defocused wide-field total internal reflection fluorescence microscopy. This gave snapshots of individual rotaxane molecules in the form of emission patterns. In simplified terms, if the cuff is motionless, the patterns make it possible to calculate the direction in which the probe emits its fluorescent light. This makes it possible to calculate the orientation of the cuff, which remains constant for every snapshot. However, if the cuff is rotating, the emission pattern does not reveal the spatial orientation of the probe.

The researchers showed that the cuff of the rotaxane does not rotate if the sample is dry. However, when it is wet they can see very rapid rotational and vibrational motion. The cuff rotates faster than the time required to snap a picture: the rotational speed is thus over 360 in 300 milliseconds.

####

For more information, please click here

Copyright © Wiley-Blackwell

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Molecular Machines

Using DNA origami to build nanodevices of the future September 1st, 2015

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Molecular Nanotechnology

Using DNA origami to build nanodevices of the future September 1st, 2015

Sandcastles inspire new nanoparticle binding technique August 5th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Rare form: Novel structures built from DNA emerge July 20th, 2015

Discoveries

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Announcements

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic